• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.031 seconds

Derivation of Intervention levels for Protection of the Public in a Radiological Emergency in Korea (주민보호조치를 위한 국내 방사선비상 개입준위 산출)

  • Lee, Jong-Tai;Lee, Goan-Yup;Khang, Byung-Oui;Oh, Ki-Hoon;Kim, Chang-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.357-365
    • /
    • 2001
  • Intervention levels for protection of the public in a radiological emergency are theoretically derived by the cost-benefit approach with the concept of justification and optimization. Intervention levels on the sheltering, evacuation, temporary relocation and permanent resettlement for protection of the public are estimated with the cost to protective countermeasures and the value from dose averted which are the site specific parameters. As a result, it is confirmed that IAEA guidelines for intervention levels are applicable to the radiological emergency in Korea. Optimum ranges of 5 - 10 mSv/2days for sheltering, 25 - 130 mSv/week for evacuation, 15 - 90 mSv/month lot temporary relocation and 600 - 3,500 mSv/lifetime for permanent resettlement for intervention levels are also provided. The result can be applied as useful data to update intervention levels under the theoretical background in Korea.

  • PDF

A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise (초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법)

  • Park, Taeyoung;Joo, Hyun-Shik;Jang, Inman;Kang, Seung-Hoon;Ohm, Won-Suk;Shin, Sang-Joon;Park, Jeongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 2020
  • Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Growth Optimization of Photorhabdus luminescens Isolated from Entomopathogenic Nematode Heterorhabditis bacteriophora (병원성 선충 Heterorhabditis bacteriophora에서 분리된 공생 박테리아 Photorhabdus luminescens의 생장조건)

  • Yoo, Sun Kyun;Randy Gaugler;Christopher W. Brey
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2001
  • The yield of infective juveniles of Heterorhabditis bacteriophora (Tf strain) in vitro monoxenic liquid culture was improved significantly as the amount of symbiont biomass, Photorhabdus sp. strain Tf, increased. To investigate the influence of abiotic factors on the growth and biomass production of Photorhabdus sp. strain Tf, triplicate flask cu1tmes were performed. The optinal temperature and medium pH for the growth of Photorhahdus sp. strain Tf were 30$^{\circ}$C and between pH 5.5-7.3, respectively. Aeration also improved greatly growth and yield of biomass of Photorhabdus sp. strain Tf. Photorhabdus sp. strain Tf in batch fermentation showed growth-associated pattem in terms of pigment production, and the pH of culture medium rose steadily until growth stopped dUling the fermentation. Both pigment production and culture pH rise would be useful parameters indicating a reliable growth of Photorhabdus sp. strain Tf.

  • PDF

Meaurement Algorithms for EDGE Terminal Performance Test (EDGE 단말기 성능 테스트를 위한 측정 알고리즘)

  • Kang, Sung-Jin;Hong, Dae-Ki;Kim, Nam-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2719-2730
    • /
    • 2009
  • In this paper, we implement the measurement functionality for performance measurements of EDGE (Enhanced Data Rates for GSM Evolution) terminal by using software. Generally speaking, the receiving algorithms in normal MODEM cannot be used directly to a measurement system due to the lack of accuracy. Therefore, we propose a new receiver algorithm for precise EDGE signal measurements. In the proposed algorithm, 2-stage (coarse stage, fine stage) parameters estimation (symbol-timing, frequency offset, carrier phase) scheme is used. To improve the estimation accuracy, we increase the number of the received signal samples by interpolation. The proposed EDGE signal measurement algorithm can be used for verifying the hardware measurement system, and also can be used for the commercial systems through software optimization.

A Study on Energy Savings in a Network Interface Card Based on Optimization of Interrupt Coalescing (인터럽트 병합 최적화를 통한 네트워크 장치 에너지 절감 방법 연구)

  • Lee, Jaeyoul;Han, Jaeil;Kim, Young Man
    • Journal of Information Technology Services
    • /
    • v.14 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • The concept of energy-efficient networking has begun to spread in the past few years, gaining increasing popularity. A common opinion among networking researchers is that the sole introduction of low consumption silicon technologies may not be enough to effectively curb energy requirements. Thus, for disruptively boosting the network energy efficiency, these hardware enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving, by exploiting network-specific features. The IEEE 802.3az Energy Efficient Ethernet (EEE) standard is one of such efforts. EEE introduces a low power mode for the most common Ethernet physical layer standards and is expected to provide large energy savings. However, it has been shown that EEE may not achieve good energy efficiency because mode transition overheads can be significant, leading to almost full energy consumption even at low utilization levels. Coalescing techniques such as packet coalescing and interrupt coalescing were proposed to improve energy efficiency of EEE, but their implementations typically adopt a simple policy that employs a few fixed values for coalescing parameters, thus it is difficult to achieve optimal energy efficiency. The paper proposes adaptive interrupt coalescing (AIC) that adopts an optimal policy that could not only improve energy efficiency but support performance. AIC has been implemented at the sender side with the Intel 82579 network interface card (NIC) and e1000e Linux device driver. The experiments were performed at 100 M bps transfer rate and show that energy efficiency of AIC is improved in most cases despite performance consideration and in the best case can be improved up to 37% compared to that of conventional interrupt coalescing techniques.

Optimization of Stock Trading System based on Multi-Agent Q-Learning Framework (다중 에이전트 Q-학습 구조에 기반한 주식 매매 시스템의 최적화)

  • Kim, Yu-Seop;Lee, Jae-Won;Lee, Jong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Q-learning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents Communicate With Others Sharing training episodes and learned policies, while keeping the overall scheme of conventional Q-learning. Experimental results on KOSPI 200 show that a trading system based on the proposed framework outperforms the market average and makes appreciable profits. Furthermore, in view of risk management, the system is superior to a system trained by supervised learning.

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.