• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.035 seconds

Optimization of Coil Design for Helical Magneto-Cumulative Generators (나선형 자장압축발전기의 코일설계 최적화)

  • 국정현;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.477-487
    • /
    • 2004
  • Helical magneto-cumulative generators(MCGs) are devices which convert explosive energy into electromagnetic energy. The electromagnetic energy supplied from an external circuit is amplified by an explosively driven metal conductor mounted at the center of a helical coil compressing magnetic flux between the conductor and the coil. To optimize the coil design, output properties of small-size helical MCGs were measured while varying design parameters; the number of coil sections, length of the sections, pitch in the sections, and type of copper wire. Dimensions of the coil were kept constant, 50 mm in diameter and 200 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and figure of merit were 52.5 and 0.81, respectively. from an helical MCG with initial inductance of 63.7 $\mu$H at initial energy of 0.152 kJ Based on the experimental and calculated results, empirical formulas capable of optimizing coil designs were derived. By using these formulas, pitch in each coil section can be obtained at an arbitrary inductive load for high energy amplification ratio and figure of merit.

Control of a Swing-up Inverted Pendulum by an Adaptive Neuro Fuzzy Inference System (적응 뉴로-퍼지 추론 시스템을 이용한 스윙-업 도립진자 제어)

  • Kim, Keun-Ki;Yu, Chang-Wan;Hong, Dae-Seung;Sin, Ja-Ho;Choe, Chang-Ho;Choe, Yong-Gil;Song, Yeong-Mok;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2261-2263
    • /
    • 2001
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. These rules can then be applied to the system. It is very important to decide parameters of IF-THEN rules. Because fuzzy controller can make more adequate force to the plant by means of parameter optimization, which is accomplished by learning procedure. In this paper, we apply fuzzy controller designed to the Swing-UP Inverted pendulum.

  • PDF

A New Modeling Methodology of TFBAR (박막공진기에 대한 새로운 모델링 기법)

  • 김종수;구명권;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2004
  • In this paper, a new modeling methodology of thin film bulk acoustic resonator(TFBAR) is presented and the formulations of each lumped element in the model are also introduced. The new model is based upon the Mason model that is a reasonable model to explain the physical characteristics of unit TFBAR. After simplifying the modified Mason model with an additional dielectric loss term, the new model similar to Modified Butterworth-Van Dyke(MBVD) model is complete. The proposed model has three optimization variables which is half of the MBVD model. As a result, the curve fittings for the measured data are much faster and more accurate than any other conventional models. Moreover, it is very useful to design the bandpass filters or voltage controlled oscillators due to the design parameters, such as resonant and anti-resonant frequency, which can reflect the intentions of designer in the model.

Construction of NURBS Model for Preliminary High-Speed Monohull Design Based on Parametric Approach (파라메트릭 기법을 고속 단동선의 NURBS 모델링)

  • Nam Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.82-87
    • /
    • 2006
  • An approach to model a high-speed monohull vessel is introduced. The high-speed monohull form belonging to the category of multihull is drawing new attention, due to the rapidly growing trend of fast passenger ships and military purpose. Multihull forms are much thinner in their overall shape, compared to those of the conventional commercial vessels. Moreover, the parent hull forms are not readily obtainable when a new design is intended, which makes it hard to perform various technical calculations in terms of hull optimization, hydrodynamic computation, structural design, and so forth. In this paper, a parametric technique is used to design a high-speed hull form. To model a hull form, NURBS (Non Uniform Rational B-Spline) representation is used. The goal of research is to provide a fast and convenient tool to design an initial hull form with fewer parameters available in the early design stage. The technique employed in this paper will be applied to the design of multihull forms, such as catamaran, trimaran, and semi-swath.

The Development of a SVR-based Empirical Model for the Effect of the Unbalanced Floor Height on MVC of Lifting Task (불균형한 바닥높이가 들기 작업의 최대발휘근력에 미치는 영향 분석을 위한 SVR 예측모델 설계)

  • Oh, Hyunsoo;Chang, Seong Rok;Kim, Younghwan;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.153-159
    • /
    • 2014
  • Low back pain is one of major issues in musculoskeletal diseases mainly caused by MMH (Manual Material Handling) tasks. In Korea, the standards of NIOSH(National Institute for Occupational Safety and Health) Lift Equations in U. S. A. have been most widely used. However, there is no standard in case the height of one feet is higher than that of another one. Moreover, since the standards are developed in U. S. A., there are many limitations for the applicability of Korean workers. In this study, MVC(Maximum Voluntary Contraction) for four postures are measured and an empirical model based on SVR(Support Vector Regression) is constructed. Constructing SVR model, PSO(Particle Swarm Optimization) is employed to investigate the optimal parameters of SVR. The results show that the performance of this empirical model is approximately accurate, even if the deviation of experimental values is large due to the individual differences. This empirical model may contribute to establish the standards of MMH tasks in Korea.

The structure analysis of $Y_1Ba_2Cu_3O_x$ high Tc superconductor based on rietveld method (리트벨트 해석법을 이용한 $Y_1Ba_2Cu_3O_x$ 고온 초전도체의 구조분석)

  • 채기병;소대화
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.780-786
    • /
    • 1995
  • For the execution of RIETAN program adopting Rietveld Analysis Method, the sample superconductor is made according to the solid state synthesis method at 920.deg. C for 24hrs, and was examined for the optimization of parameters needed to analyze Rietveld method with the input of the measured pattern data after measuring the pattern resulted from the X-ray diffraction. It was proven that the lattice constant of the superconductor which was consisted of Pmmm orthorhombic crystal structure in the analyzed space group correspond to the presented theoretical lattice constant a=3.8887(8).angs., b=3.8238(4).angs., c=11.7079.angs.. Therefore, it was examined and confin-ned that the R factor, which was compensated after analyzing the structure of superconductor resulted from this experimented data with the computer simulation, was refined to $R_{wp}$=8.83[%], $R_{P}$=6.47[%], $R_{I}$=10.08[%], $R_{F}$=7.19[%], $R_{E}$=3.76[%]. On the basis of these experimental data, the significant parameter such as the scale factor(S) and the zero point shift(Z) and FWHM value(U,V,W) were optimized as follows; S=2.0827E-3, Z=0.2146, U=4.2761E-2, V=1.7983E-2, and W=2.6768E-2.2.2.2.2.2.

  • PDF

Improvement of Stixel Segmentation Using Additive Image Domain Features and Genetic Algorithm-based Optimization (영상 영역 특징 추가 및 유전 알고리즘 기반 최적화를 통한 스틱셀 분할 개선 방법)

  • Lee, Sunyoung;Suhr, Jae Kyu;Jung, Ho Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.565-574
    • /
    • 2015
  • Recently, a medium-level representation named "Stixel" has been extensively researched in stereo vision-based environmental perception. Obstacle detection using Stixel representation consists of three steps: static Stixel generation, dynamic Stixel generation, and Stixel segmentation. This paper focuses on the Stixel segmentation step and has two contributions. One is that it shows that Stixel segmentation performance can be enhanced by utilizing both image domain and real world domain features. The other is that it suggests that parameters used for Stixel segmentation can be effectively tuned based on genetic algorithm. The proposed method was quantitatively evaluated and the result showed that the proposed method increased Stixel segmentation accuracy compared with the previous method.

An Optimization of Inductive Coil Design for Thixoforging and Its Experimental Study (반용융 단조를 위한 유도가열용 코일설계의 최적화 및 실험적 연구)

  • Jung, Hong-Kyu;Kim, Nam-Seok;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most important aspects. From this point of view, an optimal design of the induction coil is necessary. The objective of inductive coil designsi a uniform induction heating over the length of the billet. The effect of coil length, diameter, the gap between coil surface and billet and axial position of the billet on temperature distribution of billet has been investigated. These design parameters have an important effectiveness on the electro-magnetic field. Therefore, in this study an optimal coil design to minimize electromagnetic ed effect will be proposed by defining the relationship between billet length and coil length. In particular, key point in induction heating process is focussed on optimizing the coil design with regard to the size of the heating billet and the frequency of induction heating system. After demonstrating the suitability of an optimal coil design through the FEM simulation of the induction heating process, the results of the coil design are also applied to the reheating process to obtain a fine globular microstructure. Its considered that the reheating conditions of aluminum alloys for thixoforging and a new CAE model of the induction heating process are very useful for thixoforging practitioners including induction heating ones.

  • PDF

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.