• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.028 seconds

Optimization of Friction Welded Joint Conditions in Alloy718 and the Nondestructive Evaluation (Alloy718 마찰접합조건의 최적화와 비파괴 평가)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • Friction welding was performed to investigate mechanical properties for Ni-base superalloy with 15 mm diameter solid bar. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bond of area and heat affected zone. And then, the nondestructive technique to evaluate the weld quality was carried out by acoustic emission(AE) and ultrasonic attenuation coefficient. The tensile strength of the friction welded joint was shown up to 90 % of the Alloy718 base metal under the condition of the heating time over 5 sec. The optimal welding conditions were n=2,000 rpm, $P_1=200$ MPa, $P_2=200$ MPa, $t_1=8$ sec and $t_2=5$ sec when the total upset length was 4.4 mm.

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.

Theoretical Limits Analysis of Indoor Positioning System Using Visible Light and Image Sensor

  • Zhao, Xiang;Lin, Jiming
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.560-567
    • /
    • 2016
  • To solve the problem of parameter optimization in image sensor-based visible light positioning systems, theoretical limits for both the location and the azimuth angle of the image sensor receiver (ISR) are calculated. In the case of a typical indoor scenario, maximum likelihood estimations for both the location and the azimuth angle of the ISR are first deduced. The Cramer-Rao Lower Bound (CRLB) is then derived, under the condition that the observation values of the image points are affected by white Gaussian noise. For typical parameters of LEDs and image sensors, simulation results show that accurate estimates for both the location and azimuth angle can be achieved, with positioning errors usually on the order of centimeters and azimuth angle errors being less than $1^{\circ}$. The estimation accuracy depends on the focal length of the lens and on the pixel size and frame rate of the ISR, as well as on the number of transmitters used.

Design of the Electromagnetically Coupled Broadband Microstrip Antennas with Radial Tuning Stub (방사형 동조 스터브를 갖는 전자기결합 광대역 마이크로스트립 안테나의 설계)

  • 김정렬;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.26-35
    • /
    • 1996
  • In this paper, characteristics of the electromagnetically coupled broadband microstrip antennas are analyzed by the Finite Difference Time Domain (FDTD) method, and antenna para- meters are optimized to get maximum bnadwidth. By using short radial tuning stub in microstrip feedline, electromagnetically coupled microstrip antenna shows broadband ($\simeq$13%) characteristics, and the characteristics are varied as a function of radius, radial angle, and position of the radial tuning stub. Operating frequency, return loss, VSWR and input impedance are calculated by Fourier transforming the time domain results. After optimization of the parameters, maximum bandwidth of the radial stub tuning microstrip antenna is about 15% and the ripple char- acteristic of the VSWR is better than the rectangular tuning stub microstrip antenna.

  • PDF

Acoustic Tests on Atmospheric Condition in a Liquid Rocket Engine Chamber (액체로켓엔진 연소실에서의 상온 음향 시험)

  • Ko, Young-Sung;Lee, Kwang-jin;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • Acoustic characteristics of unbaffled and baffled combustion chamber are experimentally investigated under atmospheric condition to preliminarily determine baffle for mitigation of combustion instability. To investigate the effect of the baffle which has several configurations such as radial baffles and hub/blade baffle, resonant-frequency shift and damping factors of the chamber were analyzed and compared quantitatively with those of the unbaffled combustion chamber. From a view of acoustic characteristics, radial baffles with several configurations have not much difference in resonant-frequency shift and damping factor ratio with each other. On the other hand, hub and blade baffle is very effective to suppress the first tangential mode which was found to be the most harmful acoustic mode in KSR(Korean Sounding Rocket)-III engine. But more study on design parameters such as hub size and axial length should be done for complete optimization of hub and blade baffle. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

Analysis of multi-facet drill(MFD) performance and optimization of MFD geometry (다면 드릴의 성능 해석과 최적화)

  • 이상조;윤영식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1523-1532
    • /
    • 1990
  • The objective of this study is to develope an optimized multi-facet drill (MFD). The principal factors that affect drilling performance are its geometry and the cutting conditions. In particular, the helix angle in the total twist angle of the twist drill, affects much morgen influence on the dynamic and static stiffness and on determining the characteristics of the chip disposal capacity of the drill. In this study, considering the helix angle as a major parameter, the model was developed. From this model, the deformation of transverse direction was simulated with the bending forces applied. The performance of a drill largely depends upon drilling forces. Comprehensive models for predicating the drilling thrust and torque are developed for the different drill geometries. The effects of MFD geometric parameters on thrust and torque are also deduced from the prediction models, from which an optimal drill geometry is found with the emphasis on minimum drilling forces.

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (I) - Modeling and Performance Analysis - (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (I) -모델링 및 성능해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1029-1037
    • /
    • 2004
  • High-speed/precision servomechanisms have been widely used in the manufacturing and semiconductor industries. In order to ensure the required high-speed and high-precision specifications in servomechanisms, an integrated design methodology is required, where the interactions between mechanical and electrical subsystems will have to be considered simultaneously. For the first step of the integrated design process, it is necessary to obtain not only strict mathematical models of separate subsystems but also formulation of an integrated design problem. A two-degree-of-freedom controller described in the discrete-time domain is considered as an electrical subsystem in this paper. An accurate identification process of the mechanical subsystem is conducted to verify the obtained mathematical model. Mechanical and electrical constraints render the integrated design problem accurate. Analysis of the system performance according to design and operating parameters is conducted for better understanding of the dynamic behavior and interactions of the servomechanism. Experiments are performed to verify the validity of the integrated design problem in the x-Y positioning system.

The Prediction of Etching Characteristics Using Spray Characteristics in Etching Process of Lead-Frame (Lead-Frame 에칭공정에서 분무특성을 이용한 에칭특성의 예측)

  • Jeong Heung-Cheol;Choi Gyung-Min;Kim Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.381-388
    • /
    • 2006
  • The objective of this study is to predict the etching characteristics using spray characteristics for the optimization on the etching process of Lead-Frame. The etching characteristics such as etching factor, uniformity were investigated on the actual operating conditions. The correlation between the etching characteristics and the spray ones obtained by measurement were analyzed to simulate the etching characteristics according to actual conditions of lead-frame etching process. These conditions of lead-frame process were spray pressure, distance from nozzle tip to substrate, pipe pitch, and nozzle pitch. To improve the etching characteristics in the lead-frame process, effects of the various operating conditions should be understood in detail. The spray characteristics obtained by experiment using PDA system were simulated by the Monte-Carlo method. The etching process model was coded by Java language. It was found that simulation results generally agreed well with the measured results of etching characteristics in lead-frame etching process. The optimal operating parameters were successfully found under variable conditions.

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.

A Study on the Optimization of Cylinder Head Port Flow for Hyundai H21/32 Medium-Speed Diesel Engines (현대 H21/32 중속 디젤엔진 실린더 헤드포트 최적화 연구)

  • Kim, Byung-Yoon;Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.806-811
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly effected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. In this study, two approach methods were used for design intake and exhaust port; experiment and computation which were made by using steady flow test rig and commercial CFD code. This paper presents the results of an experimental and analytical investigation of steady flow through the prototype cylinder head ports and valves of the HHI's H21/32 HIMSEN Engine.

  • PDF