• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.031 seconds

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza;Mirzadeh, Hamed
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

Dynamic Routing and Scheduling of Multiple AGV System (다중 무인운반차량 시스템에서의 동적 라우팅과 스케줄링)

  • 전동훈
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.67-76
    • /
    • 1999
  • The study of the optimization of operating policy of AGV system, which is used in many factory automation environments has been proceeded by many researchers. The major operating policy of AGV system consists of routing and scheduling policy. AGV routing is composed with collision avoidance and minimal cost path find algorithm. To allocate jobs to the AGV system, AGV scheduling has to include AGV selection rules, parking rules, and recharging rules. Also in these rules, the key time parameters such as processing time of the device, loading/unloading time and charging time should be considered. In this research, we compare and analyze several operating policies of multiple loop-multiple AGV system by making a computer model and simulating it to present an appropriate operating policy.

  • PDF

-An Application of Simulated Annealing for an FMS Disatching Priority Problem (유연생산시스템의 투입우선순서결정을 위한 Simulated Anneaing의 적용)

  • 이근형;황승국;이강우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.77-85
    • /
    • 2000
  • One form of job shop scheduling problem in contemporary automated manufacturing such as flexible manufacturing systems (FMS's) is presented which we call the FMS dispatching priority problem. The FMS dispatching priority problem seeks the best dispatching priority of parts and operations, and is essentially a combinatorial optimization problem. Because of the complicated mechanism of the system, the performance of a given dispatching priority must be evaluated via simulation. Simulated annealing have been applied to the problem, and it is found that appropriate parameter setting will be desirable to get good, if not the optimal, solutions within a limited amount of time under the presence of heavy computational burden due to simulation. More specifically, experiments reveal that initial temperature is the single most important factor among other parameters and factors, and that the appropriate initial temperature depends on the allowable computer time in such a way that the less time one can afford to spend, the lower the appropriate initial temperature should be.

  • PDF

On the Optimum Preliminary Hull Form Design by Hull Form Transformation Technique (선형변환에 의한 최적 초기선형설계 기법에 관한 연구)

  • K.Y.,Lee;W.S.,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.20-28
    • /
    • 1987
  • In general, preliminary hull form design is performed by changing a parent hull form using a computer to satisfy given requirements, e.g., principal dimensions, displacement, $L_{CB}$, and etc. Principal dimensions, $C_b,\;L_{CB}$ and midship sections are the only parameters to be modified in the traditional hull form variation methods available for preliminary design. In this paper, a method is presented in which local cross sections as well as principal dimensions and midship sections are modified according to design requirements. The method gives hydrostatic curves of modified hull form simultaneously. An optimization technique to satisfy the constraints of hydrostatic characteristics such as maximizing KM as a design requirement is also considered.

  • PDF

A Study on the Analysis on Running Safety of Railway Vehicle According to The Change of Suspension Stiffness (현가장치 강성변화에 따른 주행안전성 해석에 관한 연구)

  • Hyun, Seok;Eom, Beom-Gyu;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1622-1627
    • /
    • 2008
  • A suspension is a core part, determining running stability and riding quality of vehicles and its stiffness is essential parameters in the process of vehicle designing. Suspension stiffness shall be adjusted to meet requirements of running stability and curve running performance, as adding stiffness to primary suspension for running stability in high-speed running results running performance degradation in curved track. The purpose of the report lies in utilization of usable data for optimization of suspension via analyzing running performance through changing stiffness of railway vehicle suspension.

  • PDF

Proportional Gain Estimation for Optimum Time Response of SCL EM Reaction Wheel (SCL EM 반작용 휠의 시간응답 최적화를 위한 비례 이득 추정)

  • Kim, Joon-Ho;Lee, Sang-Wook;Cheon, Dong-Ik;Oh, Hwa-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.4
    • /
    • pp.7-10
    • /
    • 2009
  • The driver's speed control to the satellite's mission is required. Therefore, optimal control over the value of benefits is required. Driver to control the characteristics of the driver and the driver was analyzed. Experimental results based on the estimated parameters using the equations of motion and was passed to save the function. Using optimization techniques applied to estimate the proportional term gain was the result of the analysis.

  • PDF

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

Analysis of Heavy Water Separation Cascade Using Bithermal ${H_2}$/$H_2$O Exchange Process

  • Ahn, Do-Hee;Paek, Seung-Woo;Lee, Han-Soo;Hongsuk Chung;Masami Shimizu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.571-576
    • /
    • 1996
  • The 3-stage cascade composed of the multisection-type bithermal $H_2$/$H_2O$-exchange columns was suggested for heavy water separation. In order to study the separation characteristics for the cascade, a matrix equation with 18 simultaneous equations was composed and the concentrations and flow rates were calculated for the all parts of the cascade. Product D-concentration decreases and extraction yield increases with increasing cut in each stage, which is one of the principal parameters of the separation characteristics. The optimization of the 3-stage cascade can be made by case study using the matrix equation.

  • PDF

Optimization of GaAs/AIGaAs depleted optical thyristor structure for lower depletion voltage (Depleted Optical Thyristor의 공핍전압에 관한 연구)

  • Choi, Woon-Kyung;Kim, Doo-Geun;Choi, Young-Wan;Lee, Seok;Woo, Duk-Ha;Byun, Young-Tae;Kim, Jae-Heon;Kim, Sun-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.220-221
    • /
    • 2003
  • We optimized the structure of a fully depleted optical thyristor (DOT) to achieve the faster switching speed and the lower power consumption by the depletion of charge at the lower negative voltage. The fabricated optical thyristor shows sufficient nonlinear s-shape I-V characteristics with the switching voltage of 2.85 V and the complete depletion voltage of -8.73 V. In this paper, using a finite difference method (FDM), we calculate the effects of parameters such as doping concentration and thickness of each layer to determine the optimized structure in the view of the fast and low-power-consuming operation.

  • PDF

Internal Structure Optimization to enhance the Thermal Performance of an Air-cooled Lithium-ion Battery Pack (공냉식 리튬 이온 배터리 팩의 열 성능 향상을 위한 내부 구조 최적화)

  • Li, Quanyi;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.54-64
    • /
    • 2021
  • Electric vehicles use lithium-ion battery packs as the power supply, where the batteries are connected in series or parallel. The temperature control of each battery is essential to ensure a consistent overall temperature. This study focused on reducing ohmic heating caused by batteries to realize a uniform battery temperature. The battery spacing was optimized to improve air cooling, and the tilt angle between the batteries was varied to optimize the internal structure of the batterypack. Simulations were performed to evaluate the effects of these parameters, and the results showed that the optimal scheme effectively achieved a uniform battery temperature under a constant power discharge. These findings can contribute to future research on cooling methods for battery packs.