• Title/Summary/Keyword: Parameters Optimization

Search Result 3,264, Processing Time 0.034 seconds

Determination and Optimization of welding condition using Fuzzy Expert System for MAG-Welding (퍼지 전문가 시스템을 활용한 적정 용접조건의 설정과 최적화)

  • J.Y. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.136-141
    • /
    • 1995
  • Determination and optimization of proper welding condition are very important tasks to be directly related to weld quality and productivity. On this research the relationship between welding parameters and results is investigated systematically. Theoretical method, statistical analysis of experimental data and analysis of empirical knowledge are applied for this work. These results are represented by empirical equations, fuzzy rules and artificial intelligent knowledge forms in the knowledge base. The approximate reasoning of fuzzy expert system and the information in the knowledge base are used for recommendation of suitable welding condition, and optimization of welding parameter which is based on the evaluation of welding results by user.

  • PDF

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

Numerical Investigation of Thermal Characteristics and Geometrical Optimization in circular tubes with micro fins (원형 단면관 내 미세 휜의 형상 변화에 따른 열.유동 특성 및 최적 형상 개발에 관한 수치 해석)

  • Han, Dong-Hyouck;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1113-1118
    • /
    • 2006
  • A numerical investigation of single phase heat and flow characteristics in circular tubes with a single set of spiral micro fins was performed with varying geometrical parameters like fin height, spiral angle, and number of fins. The properties of $40^{\circ}C$ water was used as a working fluid to simulate a condenser and the RNG $k-{\epsilon}$ turbulence model was adopted. Calculation results were obtained in fully developed turbulent flow with constant surface heat flux boundary condition. Relative terms were introduced to investigate the substitution effect of conventional smooth tubes. The dimensionless terms were the heat transfer enhancement factor, the pressure drop penalty factor, and the efficiency index. Additionally, a numerical optimization was carried out to maximize thermal performance with the concept of the robust design. A statistical analysis showed that fin height interacts with number of fins and spiral angle.

  • PDF

Summarized IDA curves by the wavelet transform and bees optimization algorithm

  • Shahryari, Homayoon;Karami, M. Reza;Chiniforush, Alireza A.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.165-175
    • /
    • 2019
  • Incremental dynamic analysis (IDA), as an accurate method to evaluate the parameters of structural performance levels, requires many non-linear time history analyses, using a set of ground motion records which are scaled to different intensity levels. Therefore, this method is very computationally demanding. In this study, a new method is presented to estimate the summarized (16%, 50%, and 84% fractiles) IDA curves of a first-mode dominated structure using discrete wavelet transform and bees optimization algorithm. This method reduces the number of required ground motion records for the prediction of the summarized IDA curves. At first, a subset of first list ground motion records is decomposed by means of discrete wavelet transform which have a low dispersion estimating the summarized IDA curves of equivalent SDOF system of the main structure. Then, the bees algorithm optimizes a series of factors for each level of detail coefficients in discrete wavelet transform. The applied factors change the frequency content of original ground motion records which the generated ground motions records can be utilized to reliably estimate the summarized IDA curves of the main structure. At the end, to evaluate the efficiency of the proposed method, the seismic behavior of a typical 3-story special steel moment frame, subjected to a set of twenty ground motion records is compared with this method.

Mobile User Interface Pattern Clustering Using Improved Semi-Supervised Kernel Fuzzy Clustering Method

  • Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.986-1016
    • /
    • 2019
  • Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions

  • Fan, Linyuan;Kong, Degang;Song, Jun;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.29-45
    • /
    • 2022
  • The optimization for dynamic response associated with a cylindrical shell which is made of laminated composites embedded in a piezoelectric layer which is subjected to temperature rises and is resting on an elastic foundation is investigated for the first time. The first shear order theory (FSDT) is utilized in order to obtain the strain relations of the shell. Then, using the energy method, the equations of motions as well as boundary condition of the problem are attained. The formulation of this study together with the solution procedure which is a numerical solution method, differential quadrature method (DQM) is validated using other researches. This paper presents a thorough study on the parameters which impacts the vibration frequency of the laminated shell. The results of this paper shows that any type of laminated composite shell can reduce the vibration frequency providing that the angle related to layer are higher than 85 degrees. Also, in order to reduce the effect of temperature rises, the laminated composites instead of orthotropic one can be used.

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo;Wen, Sun;Wei, Li
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.