• Title/Summary/Keyword: Parameter of Large Deformation

Search Result 74, Processing Time 0.022 seconds

AN EFFECT OF LARGE DEFORMATIONS ON WAVES IN ELASTIC CYLINDRICAL LAYER

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.811-818
    • /
    • 1998
  • A cylindrical elastic layer in finite deformation s con-sidered. The characteristics of the linear longitudinal wave and the nonlinear shear wave are investigated; the dependence of the later on the parameter of large deformation is given.

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

Tool life Evaluation of Hot Forging about Plastic Deformation and Wear (소성변형 및 마멸을 고려한 열간 단조 금형의 수명 평가)

  • 이현철;김동환;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • Hot forging is widely used in the manufacturing of industry machine component. The mechanical, thermal load and thermal softening which are happened by the high temperature in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. These are one of the main factors affecting die accuracy and tool life. That is because hot forging process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forging tool by wear and plastic deformation analysis considering tempering parameter has been carried out for automobile component. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

  • PDF

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Euler Parameters Method for Large Deformation Analysis of Marine Slender Structures (오일러 매개변수를 이용한 해양 세장체 대변위 거동 해석)

  • Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.163-167
    • /
    • 2003
  • A novel method for 3-dimensional dynamic analysis of marine slender structure gas been developed by using Euler parameters. The Euler parameter rotation, which is being widely used in aerospace vehicle dynamics and multi-body dynamics, has been applied to elastic structure analysis. Large deformation of flexible slender structures is described by means of Euler parameters. Euler parameter method is implemented effectively in incremental-iterative algorithm for 3D dynamic analysis. The normalization constraint of Euler parameters is efficiently satisfied by means of a sequential updating method.

  • PDF

Effects of the Grinding Conditions on the Machining Elasticity Parameter

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.62-67
    • /
    • 2003
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed, depth of cut, on this parameter experimentally, Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

Life Estimation of Hot Forging Die by Plastic Deformation and Wear (소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF

Design of Beam Sections under Large Flexural Deformation

  • Kim, Jang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.248-251
    • /
    • 2003
  • The ACI 318 stress block parameters have been closely examined for validity of their values in evaluation of flexural strength and deformability. For this the conventional definition of stress block has been used. The comparison of parameter values between ACI stress blocks and the exact approach implies that an alternative idealization other than the rectangular stress block may be required.

  • PDF

Effects of the Surface Grinding Conditions on the Machining Elasticity Parameter (평면연삭조건이 가공탄성계수에 미치는 영향)

  • 임관혁;김강
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.26-32
    • /
    • 1998
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed and depth of cut, on this parameter experimentally. Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

  • PDF