• 제목/요약/키워드: Parameter estimated optimization

검색결과 88건 처리시간 0.029초

고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정 (Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation)

  • 이건명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

PPGA 기반의 시스템 파라미터 추정과 PID 제어기 동조 (System Parameter Estimation and PID Controller Tuning Based on PPGAs)

  • 신명호;김민정;이윤형;소명옥;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.644-649
    • /
    • 2006
  • In this paper, a methodology for estimating the model parameters of a discrete-time system and tuning a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems regarding parameter estimation and controller tuning, pseudo-parallel genetic algorithms(PPGAs) are used. The parameters of a discrete-time system are estimated using both the model adjustment technique and a PPGA. The digital PID controller is described by the pulse transfer function and then its three gains are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.

SWMM의 유출량 보정을 위한 매개변수 최적화 (Parameter Optimization for Runoff Calibration of SWMM)

  • 조재현;이종호
    • 환경영향평가
    • /
    • 제15권6호
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍 (Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation)

  • 이창용
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권9호
    • /
    • pp.694-705
    • /
    • 2010
  • 진화 프로그래밍은 실수형 최적화 문제에 널리 사용되는 알고리즘으로 돌연변이 연산이 중요한 연산이다. 일반적으로 돌연변이 연산은 확률 분포와 이에 따른 매개변수를 사용하여 변수값을 변화시키는데, 이 때 매개변수 역시 돌연변이 연산의 대상이 됨으로 이를 위한 또 다른 매개변수가 필요하다. 그러나 최적의 매개변수 값은 주어진 문제에 전적으로 의존하기 때문에 매개변수 개수가 많은 경우 매개변수값들에 대한 최적 조합을 찾기 어렵다. 이러한 문제를 부분적으로나마 해결하기 위하여 본 논문에서는 변수의 돌연변이 연산을 위한 매개변수를 자기 적응적 관점에서 이론적으로 추정한 돌연변이 연산을 제안하였다. 제안한 알고리즘에서는 코시 확률 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용함으로 축척 매개변수에 대한 돌연변이 연산이 필요하지 않다는 장점이 있다. 제안한 알고리즘을 벤치마킹 문제에 적용한 실험 결과를 통해 볼 때, 최적값 측면에서는 제안한 알고리즘의 상대적 우수성은 벤치마킹 문제에 의존하였으나 계산 시간 측면에서는 모든 벤치마킹 문제에 대하여 제안한 알고리즘이 우수하였다.

지하구조물 건설시 역해석에 의한 지반특성치 산정 (A Study on Feed Back System for the Geotechnical Parameter Estimation in Underground Construction)

  • 이인모;김동현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.191-198
    • /
    • 1994
  • This paper deals with a feedback system for the estimation of geotechnical parameters in underground construction works. The Ordinary Least Square (OLS) Optimization Method is utilized and combined with Finite Element Program so that optimum values of ground properties can be estimated. The preperties that can be estimated are Young's and Brown's failure criteria is proposed.

  • PDF

강우-유출모형 매개변수의 최적화 및 불확실성 분석 (Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model)

  • 문영일;권현한
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.723-726
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established, uncertainty analysis, therefore, are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an expected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

  • PDF

풍력 블레이드용 익형 개발에 대한 연구 (The Research of Airfoil Development for Wind Turbine Blade)

  • 김태우;박상규;김진범;권기영;오시덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.512-515
    • /
    • 2009
  • This research describes on airfoil shape design, crucial to core technique and algorithm optimization for the wind turbine blade development. We grasped the parameter to define the airfoil shape in the wind turbine blade and aircraft, and the important performance characteristic of the airfoil. The airfoil shape function is selected by studying which is suitable for wind turbine blade airfoil development. The selected method is verified by to compare the generated airfoil shape with base airfoil. The new airfoils were created by the selecting shape function based on the well-known airfoil for wind turbine blades. In addition, we performed aerodynamic analysis about the generated airfoils by XFOIL and estimated the point of difference in the airfoil shape parameter using the aerodynamic performance results which is compared with basic airfoil. This result data applies to the fundamental research for a wind turbine blade optimization design and accomplished the aerodynamic analysis manual.

  • PDF

로버스트 변수모형의 비선형 목표계획법 접근방법 (Nonlinear Goal Programming Approach for Robust Parameter Experiments)

  • 이상헌
    • 한국국방경영분석학회지
    • /
    • 제28권1호
    • /
    • pp.47-66
    • /
    • 2002
  • Instead of using signal-to-noise ratio, we attempt to optimize both the mean and variance responses using dual response optimization technique. The alternative experimental strategy analyzes a robust parameter design problem to obtain the best settings that give a target condition on the mean while minimizing its variance. The mean and variance are treated as the two responses of interest to be optimized. Unlike to the crossed array and combined array approaches, our experimental setup requires replicated runs for each control factor's treatment under noise sampling. When the postulated response models are true, they enable the coefficients to be estimated and the desired performance measure to be analyzed more efficiently. The procedure and illustrative example are given for the dual response optimization techniques of nonlinear goal programming.

PPGA에 기초한 디지털 PID 제어기의 최적 동조 (PPGA-Based Optimal Tuning of a Digital PID Controller)

  • 신명호;김민정;이윤형;소명옥;진강규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.314-320
    • /
    • 2005
  • In this paper, a methodology for estimating the parameters of a discrete-time system and designing a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems occurring regarding parameter estimation and controller design, a pseudo parallel genetic algorithm (PPGA) is used. The parameters of a discrete-time system are estimated using both the model technique and a PPGA. The digital PID controller is described by the pulse transfer function and its parameters are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.

  • PDF

Three-phase Transformer Model and Parameter Estimation for ATP

  • Cho Sung-Don
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.302-307
    • /
    • 2006
  • The purpose of this paper is to develop an improved three-phase transformer model for ATP and parameter estimation methods that can efficiently utilize the limited available information such as factory test reports. In this paper, improved topologically-correct duality-based models are developed for three-phase autotransformers having shell-form cores. The problem in the implementation of detailed models is the lack of complete and reliable data. Therefore, parameter estimation methods are developed to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, ${\lambda}-i$ saturation characteristic and core loss.