• Title/Summary/Keyword: Parameter Updating

Search Result 133, Processing Time 0.022 seconds

Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원)

  • Kim, Bong Seok;Park, Hyung Jun;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied currents and measured voltages in a domain of interest. In this paper, a modified Gauss-Newton method is proposed for conductivity image reconstruction. In the proposed method, the dimension of the inverse term is reduced by replacing the number of elements with the number of measurement data in the conductivity updating equation of the conventional Gauss-Newton method. Therefore, the computation time is greatly reduced as compared to the conventional Gauss-Newton method. Moreover, the regularization parameter is selected by computing the minimum-maximum from the diagonal components of the Jacobian matrix at every iteration. The numerical experiments with several scenarios were carried out to evaluate the reconstruction performance of the proposed method.

Nonlinear boundary parameter identification of bridges based on temperature-induced strains

  • Wang, Zuo-Cai;Zha, Guo-Peng;Ren, Wei-Xin;Hu, Ke;Yang, Hao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.563-573
    • /
    • 2018
  • Temperature-induced responses, such as strains and displacements, are related to the boundary conditions. Therefore, it is required to determine the boundary conditions to establish a reliable bridge model for temperature-induced responses analysis. Particularly, bridge bearings usually present nonlinear behavior with an increase in load, and the nonlinear boundary conditions cause significant effect on temperature-induced responses. In this paper, the bridge nonlinear boundary conditions were simulated as bilinear translational or rotational springs, and the boundary parameters of the bilinear springs were identified based on the measured temperature-induced responses. First of all, the temperature-induced responses of a simply support beam with nonlinear translational and rotational springs subjected to various temperature loads were analyzed. The simulated temperature-induced strains and displacements were assumed as measured data. To identify the nonlinear translational and rotational boundary parameters of the bridge, the objective function based on the temperature-induced responses is then created, and the nonlinear boundary parameters were further identified by using the nonlinear least squares optimization algorithm. Then, a beam structure with nonlinear translational and rotational springs was simulated as a numerical example, and the nonlinear boundary parameters were identified based on the proposed method. The numerical results show that the proposed method can effectively identify the parameters of the nonlinear boundary conditions. Finally, the boundary parameters of a real arch bridge were identified based on the measured strain data and the proposed method. Since the bearings of the real bridge do not perform nonlinear behavior, only the linear boundary parameters of the bridge model were identified. Based on the bridge model and the identified boundary conditions, the temperature-induced strains were recalculated to compare with the measured strain data. The recalculated temperature-induced strains are in a good agreement with the real measured data.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Reference Model Updating of Considering Disturbance Characteristics for Fault Diagnosis of Large-scale DC Bus Capacitors (대용량 직류버스 커패시터의 고장진단을 위한 외란특성 반영의 레퍼런스 모델 개선)

  • Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.213-218
    • /
    • 2017
  • The DC electrolytic capacitor for DC-link of power converter is widely used in various power electronic circuits and system application. Its functions include, DC Bus voltage stabilization, conduction of ripple current due to switching events, voltage smoothing, etc. Unfortunately, DC electrolytic capacitors are some of the weakest components in power electronics converters. Many papers have proposed different algorithms or diagnosis method to determinate the ESR and tan ${\delta}$ capacitance C for fault alarm system of the electrolytic capacitor. However, both ESR vary with frequency and temperature. Accurate knowledge of both parameters at the capacitors operating conditions is essential to achieve the best reference data of fault alarm. According to parameter analysis, the capacitance increases with temperature and the initial ESR decreases. Higher frequencies make the reference ESR with the initial ESRo value to decrease. Analysis results show that the proposed DC Bus electrolytic capacitor reference ESR model setting technique can be applied to advanced reference signal of capacitor diagnosis systems successfully.

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Performance Improvement of ANC System for Wireless Headset (무선헤드셋을 위한 능동 잡음 제거기의 성능 개선)

  • Park, Sung-Jin;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.343-348
    • /
    • 2011
  • This paper introduces a design for real time wireless headset using ANC (active noise control) system based on NFxLMS adaptive filter algorithm. The training time of the proposed system is significantly reduced by using the RMS delay spread of a channel as an error correction parameter, and convergence rate of the FxLMS filter has been improved with updating the coefficients of the NFxLMS filter, which we have got during the training process. Our system has shorter training time and better convergence rate at the same noise reduction level than the conventional system under real noisy environment.

Comparative Performance Study of Various Algorithms Computing the Closest Voltage Collapse Point (최단 전압붕괴 임계점을 계산하는 알고리즘의 특성 비교)

  • Song, Chung-Gi;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1078-1082
    • /
    • 1997
  • The distance in load parameter space to the closest voltage collapse point provides the worst case power margin and the left eigenvector identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents the results of the comparative performance study of the algorithms, which are applicable to a large scale power system, for computing the closest saddle node bifurcation (CSNB) point. Dobson's iterative method converges with robustness. However the slow process of updating the load increasing direction makes the algorithm less efficient. The direct method converges very quickly. But it diverges if the initial guess is not very close to CSNB. Zeng's method of estimating the approximate critical point in the pre-determined direction is attractive in the sense that it uses only using load flow equations. However, the method is found to be less efficient than Dobson's iterative method. It may be concluded from the above observation that the direct method with the initial values obtained by carrying out the iterative method twice is most efficient at this time and more efficient algorithms are needed for on-line application.

  • PDF

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.

Numerical model for bolted T-stubs with two bolt rows

  • Daidie, Alain;Chakhari, Jamel;Zghal, Ali
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.343-361
    • /
    • 2007
  • This article presents a numerical tool for dimensioning two-threaded fasteners connecting prismatic parts subjected to fatigue tension loads that are coplanar with the screw axis. A simplified numerical model is developed from unidirectional finite elements, modeling the connected parts and screws with bent elements and the elastic contact layer between the parts with springs. An algorithm updating the contact stiffness matrix, calculating forces and displacements at each node of the structure and thus normal stresses in the screws in both static and fatigue is further developed using C language. An experimental study is also conducted in parallel with the numerical approach to validate the developed model assumptions, the numerical model and the 3D finite element results. Since stiffness values for the compressive zones in the parts are analytically difficult to determine, a statistical software method is used, from which a tuning factor is derived for identifying these stiffness values. The method is also applied to set out the influence of each parameter on the fatigue behaviour of each screw. Finally, the developed model will be used to establish a new, sophisticated, fast and accurate tool for dimensioning bolted mechanical structures.