• Title/Summary/Keyword: Parameter Transfer

Search Result 871, Processing Time 0.025 seconds

Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate (강제대류 층류 막응축에서 복합열전달)

  • Lee Euk-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.238-245
    • /
    • 2006
  • This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^*/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{\rho_l{\mu}_l/{\rho_v{\mu}_v}$ and the conjugate parameter $\zeta$. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

The Optimization of Vehicle Engine Mounting System Using DFSS(design for six sigma) Technique (DFSS기법을 이용한 차량 엔진마운팅 시스템 최적화)

  • Park, Un-Hwan;Song, Yoon-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.235-241
    • /
    • 2010
  • Engine Mount plays an important role which supports engine, isolates vibration from engine and blocks the vibration from road. Development of engine mount for NVH costs great a deal. So, the cost of development being reduced, the way developed effectively engine mount using DFSS technique is proposed in this paper. CTQ(critical to quality) is vibration and parameter is dynamic stiffness of mounts. The core parameters are selected with TPA(transfer path analysis) technique. It uses design of experiments(DOE) or Taguchi Methods to optimize parameter values and reduce variation. And then, this paper shows the result of improvement for vibration in the developing vehicle.

Study on the Heat Transfer Enhancement with Array of Impinging Jet Nozzles (충돌제트 노즐의 배열방법에 따른 열전달 특성에 관한 연구)

  • Park, Jae-Hyun;Suh, Young-Kweon;Kim, Dong-Kyun;Kim, See-Pum
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1476-1481
    • /
    • 2004
  • In this paper, we present the flow and heat transfer characteristics with the array of impinging jet nozzles by using the numerical computation and experiment. Numerical solutions were obtained for dimensionless gap H=6, dimensionless outlet length L=10 and Reynolds number Re=1500 by using the commercial CFD code, CFX -5. Experimental and numerical results were agreed well with each other. It was found that the impinging jet with circular array nozzles generated the uniform heat transfer area and the maximum heat transfer is higher than rectangular array nozzles for certain parameter sets.

  • PDF

Investigations of Mixing Time Scales in a Baffled Circular Tank with a Surface Aerator

  • Kumar, Bimlesh;Patel, Ajey;Rao, Achanta
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • The oxygen transfer rate is a parameter that characterizes the gas-liquid mass transfer in surface aerators. Gas-liquid transfer mechanisms in surface aeration tanks depend on two different extreme lengths of time; namely, macromixing and micromixing. Small scale mixing close to the molecular level is referred to as micromixing; whereas, macromixing refers to mixing on a large scale. Using experimental data and numerical simulations, macro- and micro-scale parameters describing the two extreme time scales were investigated. A scale up equation to simulate the oxygen transfer rate with micromixing times was developed in geometrically similar baffled surface aerators.

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • A numerical simulation on the heat transfer and flow field was carried out to improve the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. Based on this study, it is noted that the present geometry of the heat exchanger causes poor heat transfer since the air inside shell does not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle, but it causes the increasement of the pressure drop. In this paper, the effects of the location and size of the sealing strips and flow rate through the heat exchanger on the heat transfer and pressure drop are studied.

NUMERICAL STUDY OF TRANSIENT CONJUGATE HEAT TRANSFER IN A MICRO-CHANNEL SUBSTRATE (마이크로채널 기판에서 비정상 복합 열전달의 수치적 연구)

  • Lee, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • A numerical study of transient conjugate heat transfer on micro heater in a micro-channel substrate under pulsed heating was conducted. It was found that the time constant is not affected by the pulse heating magnitude at same operating condition. Furthermore, the time constant increases with low substrate thermal diffusivity, low Reynolds number, and large channel diameter. Since the time constant is a dominant parameter to characterize transient heat transfer, it should be considered for transient convective heat transfer coefficient.

An Experimental study on Heat Transfer Characteristics of Horizontal Liquid Film Driven by Hot Wind (유동고온공기에 의해 유인되는 수평평판 액막류의 열전달에 관한 실험적 연구)

  • Park, J.H.;Park, S.K.;Yoon, S.H.;Oh, C.;Kim, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.83-88
    • /
    • 2002
  • This study is to provide the experimental information and basic data on heat transfer characteristics of horizontal liquid film driven by hot wind. Heat transfer characteristics of the liquid film in the rectangular duct was observed and the change of film temperature was measured. The experiments were carried out for a variety of parameter, such as feed water rate and velocity and temperature of feed air. From the observation and the measurement the general understanding of heat transfer characteristics for liquid film driven by hot wind was provided.

  • PDF

Numerical Study about Heat Transfer Enhancement of Water-Microparticles Suspension (물-미립자 현탁액의 난류 열전달 향상에 관한 수치해석적 연구)

  • 정세훈;손창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.29-35
    • /
    • 2000
  • The present numerical study investigates heat transfer enhancement mechanism for suspensions of polystyrene particles in water. Numerical simulations were done for turbulent hydrodynamic fully developed flows in a circular duct with constant wall heat flux. The experimental result of microparticle suspensions show 25∼45% heat transfer enhancement over those of water. The present numerical results show the main parameter for the heat transfer enhancement of microparticle suspension in a circular duct is the change of velocity profile by the non-Newtonian fluid behavior.

  • PDF

Portable Calibration System for Displacement Measuring Sensors

  • Eom, Tae-Bong;Lee, Jae-Yun;Kim, Jae-Wan;Joon, Lyou
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.56-59
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

Electrohydrodynamic (EHD) Enhancement of Boiling Heat Transfer of R113+WT4% Ethanol

  • Oh Si-Doek;Kwak Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.681-691
    • /
    • 2006
  • Nucleate boiling heat transfer for refrigerants, R113, and R113+wt4% ethanol mixture, an azeotropic mixture under electric field was investigated experimentally in a single-tube shell/ tube heat exchanger. A special electrode configuration which provides a more uniform electric field that produces more higher voltage limit against the dielectric breakdown was used in this study. Experimental study has revealed that the electrical charge relaxation time is an important parameter for the boiling heat transfer enhancement under electric field. Up to 1210% enhancement of boiling heat transfer was obtained for R113+wt4% ethanol mixture which has the electrical charge relaxation time of 0.0053 sec whereas only 280% enhancement obtained for R113 which has relaxation time of 0.97 sec. With artificially machined boiling surface, more enhancement in the heat transfer coefficient in the azeotropic mixture was obtained.