• Title/Summary/Keyword: Parameter Pattern Analysis

Search Result 271, Processing Time 0.031 seconds

The influence of the Train formation on the KTX Vibration at the Tail of the Train (KTX 차량의 편성차량수가 후미 불안정 진동에 미치는 영향)

  • Kang, Bu-Byoung;Chung, Heung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1708-1713
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called swat was found. KTX has 20 car trainsed formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainsed formation on vehicle dynamics and the train stability by 20 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that he least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. For the case of short train formation with 7 or 10cars, sway does not happen. But in the case of longer train formation with 16 or 20 cars, sway was found.

  • PDF

The influence of the Train formation on the KTX Vibration at the Tail of the Train (KTX 차량의 편성특성이 후미진동에 미치는 영향)

  • Kang Bu-Byoung;Chung Heung-Chai;Kim Jae-Chul;Ryu Young Joon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.126-131
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 20 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made .for the. analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. For the case of short train formation with 7 or 10cars, sway does not happen. But in the case of longer train formation with 16 or 20 cars, sway was found.

  • PDF

Identification of failure mechanisms for CFRP-confined circular concrete-filled steel tubular columns through acoustic emission signals

  • Li, Dongsheng;Du, Fangzhu;Chen, Zhi;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.525-540
    • /
    • 2016
  • The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.

Prediction of Developmental Ability of In Vitro Fertilized Porcine Embryos by Analysis of Early Cleavage Pattern (체외수정 돼지 배아의 초기 분할 양상 분석에 의한 발달능 예측)

  • Jeon, Yu-Byeol;Biswas, Dibyendu;Yoon, Ki-Young;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2009
  • The aim of the present study was to investigate the cleavage pattern, its developmental ability and apoptosis of porcine embryo in vitro. Morphology data on a total of 919 embryos were analyzed retrospectively. Forty-eight hours after insemination, embryos were classified into five groups based on the cleavage state as follows; 1 cell, 2 cell, 4 cell, 5 to 8 cell and fragmentation. These groups were cultured another 120 hours and then evaluated for blastocyst formation. Blastocyst formation rates were significantly higher in 4 cell (42.5%) and 5 to 8 cell (48.6%) cleaving groups than in other groups (p<0.05). On the other hand, 2 cell and fragmentation groups produced 4.9% and 3,9% blastocysts, respectively. And we could verify that in the event of 2 cell block and fragmentation of embryo. To analyze the apoptotic frequency in preimplantation development of porcine IVF embryos, all cells of each blastocyst were performed by TUNEL assay. There were no significantly differences in the total cell numbers of embryos and apoptotic cell rate in blastocysts among the each classified groups. Data suggest that 4 cell and 5 to 8 cell cleaving embryos at 48 hour after insemination have high developmental competence, and may be an useful parameter to predict the development of preimplantation embryos and to study using preimplanation embryonic research.

PD Signal Time-Frequency Map and PRPD Pattern Analysis of Nano SiO2 Modified Palm Oil for Transformer Insulation Applications

  • Arvind Shriram, R.K.;Chandrasekar, S.;Karthik, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.902-910
    • /
    • 2018
  • In recent times, development of nanofluid insulation for power transformers is a hot research topic. Many researchers reported the enhancement in dielectric characteristics of nano modified mineral oils. Considering the drawbacks of petroleum based mineral oil, it is necessary to understand the dielectric characteristics of nanofluids developed with natural ester based oils. Palm oil has better insulation characteristics comparable to mineral oil. However very few research reports is available in the area of nanofluids based on palm oil. Partial discharge (PD) is one of the major sources of insulation performance degradation of transformer oil. It is essential to understand the partial discharge(PD) characteristics by collecting huge data base of PD performance of nano modified palm oil which will increase its confidence level for power transformer application. Knowing these facts, in the present work, certain laboratory experiments have been performed on PD characteristics of nano $SiO_2$ modified palm oil at different electrode configurations. Influence of concentration of nano filler material on the PD characteristics is also studied. Partial discharge inception voltage, Phase resolved partial discharge (PRPD) pattern, PD signal time-frequency domain characteristics, PD signal equivalent timelength-bandwidth mapping, Weibull distribution statistical parameters of PRPD pattern, skewness, repetition rate and phase angle variations are evaluated at different test conditions. From the results of the experiments conducted, we came to understand that PD performance of palm oil is considerably enhanced with the addition of $nano-SiO_2$ filler at 0.01%wt and 0.05%wt concentration. Significant reduction in PD inception voltage, repetition rate, Weibull shape parameter and PD magnitude are noticed with addition of $SiO_2$ nanofillers in palm oil. These results will be useful for recommending nano modified palm oil for power transformer applications.

Comparative Study on Calculation Method for Design Flood Discharge of Dam (댐 설계홍수량 산정방법에 관한 비교연구)

  • Lee, Jai-Hong;Lee, Jong-Kyu;Kim, Tae-Woong;Kang, Ji-Ye
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.941-954
    • /
    • 2011
  • In this study, past method and recent method for flood discharge with domestic multi-purpose dams in Korea were compared and analyzed with respect to the scale of watershed. Rainfall depth, temporal pattern, rainfall excess, rainfall-runoff model, parameter estimation and base flow were selected as the principal factors affecting flood discharge and effects on flood discharge were analyzed quantitatively by using sensitivity analysis. The results showed that the flood discharges calculated by past and recent method increased and decreased with a wide range of discharge with respect to the scale of watershed. The reason for decrease of flood discharge is the exchange of temporal pattern of rainfall and the principal reasons for increase of flood discharge are the increase of rainfall depth by unusual weather phenomena and the difference of estimation method for parameters of unit hydrograph.

Buckling treatment of piezoelectric functionally graded graphene platelets micro plates

  • Abbaspour, Fatemeh;Arvin, Hadi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.337-353
    • /
    • 2021
  • Micro-electro-mechanical systems (MEMS) are widely employed in sensors, biomedical devices, optic sectors, and micro-accelerometers. New reinforcement materials such as carbon nanotubes as well as graphene platelets provide stiffer structures with controllable mechanical specifications by changing the graphene platelet features. This paper deals with buckling analyses of functionally graded graphene platelets micro plates with two piezoelectric layers subjected to external applied voltage. Governing equations are based on Kirchhoff plate theory assumptions beside the modified couple stress theory to incorporate the micro scale influences. A uniform temperature change and external electric field are regarded along the micro plate thickness. Moreover, an external in-plane mechanical load is uniformly distributed along the micro plate edges. The Hamilton's principle is employed to extract the governing equations. The material properties of each composite layer reinforced with graphene platelets of the considered micro plate are evaluated by the Halpin-Tsai micromechanical model. The governing equations are solved by the Navier's approach for the case of simply-supported boundary condition. The effects of the external applied voltage, the material length scale parameter, the thickness of the piezoelectric layers, the side, the length and the weight fraction of the graphene platelets as well as the graphene platelets distribution pattern on the critical buckling temperature change and on the critical buckling in-plane load are investigated. The outcomes illustrate the reduction of the thermal buckling strength independent of the graphene platelets distribution pattern while meanwhile the mechanical buckling strength is promoted. Furthermore, a negative voltage, -50 Volt, strengthens the micro plate stability against the thermal buckling occurrence about 9% while a positive voltage, 50 Volt, decreases the critical buckling load about 9% independent of the graphene platelet distribution pattern.

Correlation Analysis Between Gait Pattern and Structural Features of Cerebral Cortex in Patients with Idiopathic Normal Pressure Hydrocephalus (특발정상압수두증 환자의 보행 패턴과 대뇌피질의 구조적인 특징의 상관관계 분석)

  • Yun, EunKyeong;Kang, Kyunghun;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.295-303
    • /
    • 2021
  • Idiopathic normal-pressure hydrocephalus (INPH) is considered a potentially treatable neurological disorder by shunt surgery and characterized by a triad of symptoms including gait disturbance, cognitive impairment and urinary dysfunction. Although disorders of white matter are generally viewed as the principal pathological features of INPH, analysis of cortical features are important since the destruction of neural tracts could be associated with cortical structural changing. The aim of the study was to determine whether there was any relationship between gait parameter and structural features of cerebral cortex in INPH patients. Gait parameters were measured as follows: step width, toe in/out angle, coefficient of variation (CV) value of stride length, CV value of stride time. After obtaining individual brain MRI of patients with INPH and hemispheric cortical surfaces were automatically extracted from each MR volume, which reconstructed the inner and outer cortical surface. Then, cortical thickness, surface area, and volume were calculated from the cortical surface. As a result, step width was positively correlated with bilateral postcentral gyrus and left precentral gyrus, and toe in/out was positively correlated with left posterior parietal cortex and left insula. Also, the CV value of stride length showed positive correlation in the right superior frontal sulcus, left insula, and the CV value of stride time showed positive correlation in the right superior frontal sulcus. Unique parameter of cerebral cortical changes, as measured using MRI, might underline impairments in distinct gait parameters in patients with INPH.

A Study on the pattern of energy consumption of apartment in winter with Automatic Meter Reading Systems (원격검침시스템을 활용한 공동주택의 동절기 에너지 소비패턴 분석)

  • Shin, Juho;Kim, Hongseok;Lee, Donghwan;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1225-1234
    • /
    • 2013
  • According to the importance of greenhouse gas emissions, it grows day by day, the goverment is promoting to prepare the specific policy implementation to enhance building energy-saving design standars as the development agenda. In this study, the statistical analysis was performed by Descriptive statistics, Regression analysis, and Hypothesis testing to collect to generate and storage energy usage data in real time to settle parameter setting to affect energy consumption under energy-guzzling apartment not single building. This study is expected to be utilized as the basis for the optimum energy-saving design of the future of the building or facility energy costs rise and the demand for energy-efficient and stable management.

The effect of arm sling during hemiplegic gait (팔걸이가 편마비 환자의 보행에 미치는 영향)

  • Lee, Ilsuk;Lim, Hyungmoon;Choi, Sanho;Oh, Jaegun;Sung, Kang-keyng;Lee, Sangkwan
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.80-89
    • /
    • 2013
  • ■ Objectives The aim of study is to analyze the change of gait pattern by arm sling in a hemiplegic patient. ■ Methods We analyzed the change of gait pattern under three conditions using Treadmill Gait analysis equipment(Zebris Co.Ltd FDM-T) First, the patient didn't have arm sling on her upper limb, second, the patient have arm sling on her affected upper limb, third, patient have arm sling on her unaffected upper limb. ■ Results In terms of spatiotemporal gait values, swing phase, step time, step length of unaffected lower limb increased. Furthermore, stride time and stride length also increased when the patient had arm sling on her unaffected upper limb. In terms of displacement of Center of pressure(CoP), anterior/posterior position and lateral symmetry of CoP increased. Furthermore, lateral symmetry of decreased when the patient had arm sling on her affected upper limb. ■ Conclusion Arm sling applied on affected side would be advantage to gait improvement in hemiplegic patients.

  • PDF