• Title/Summary/Keyword: Parallel-flow

Search Result 1,066, Processing Time 0.032 seconds

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

Lubrication Characteristics of Surface Textured Parallel Thrust Bearing with Ellipsoidal Dimples (타원체 딤플로 Texturing한 평행 스러스트 베어링의 윤활특성)

  • Park, Tae-Jo;Kim, Min-Gyu
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.147-153
    • /
    • 2016
  • Friction reduction between machine components is important for improving their efficiency and lifespan. In recent years, surface texturing has received considerable attention as a viable means to enhance the efficiency and tribological performance of highly sliding mechanical components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, we perform lubrication analysis to investigate the effect of dimple shapes and orientations on the lubrication characteristics of a surface textured parallel thrust bearing. Numerical analysis involves solving the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. We use dimples consisting of hemispherical and different semiellipsoidal orientations for simulation. We compare pressure and streamline distributions, load capacity, friction force, and leakage flowrate for different numbers of dimples and orientations. We find that the dimple shapes, orientations, and their numbers starting from an inlet influence the lubrication characteristics. The results show that partial texturing of the bearing inlet region, and the ellipsoidal dimples with the major axis aligned along the lubricant flow direction exhibit the best lubrication characteristics in terms of higher load capacity and lower friction. The results can be used in the design of optimum dimple characteristics for parallel thrust bearings, for which further research is required.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

Performance Analysis of the Parallel CUPID Code for Various Parallel Programming Models in Symmetric Multi-Processing System (Symmetric Multi-Processing 시스템에서 다양한 병렬 기법 모델을 적용한 병렬 CUPID 코드의 성능분석)

  • Jeon, Byoung Jin;Lee, Jae Ryong;Yoon, Han Young;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • A parallelization of the bi-conjugate gradient solver for the pressure equation of the CUPID (component unstructured program for interfacial dynamics) code, which was developed for analyzing the components of a pressurized water-cooled reactor, was studied in a symmetric multi-processing system. The parallel performance was investigated for three typical parallel programming models (MPI, OpenMP, Hybrid) by solving incompressible backward-facing step flow at various grid resolutions. It was confirmed that parallel performance was low when problem size was small or the memory requirement for each thread was considerably higher than the cache memory. Furthermore, it was shown that MPI was better than OpenMP regardless of the problem size, and Hybrid was the best when the number of threads was relatively small.

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

Simulation of $H_2O/LiBr$ Triple Effect Absorption Systems with a Modified Reverse Flow

  • Jo, Young-Kyong;Kim, Jin-Kyeong;Kang, Yang-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.114-121
    • /
    • 2007
  • In this study, a modified reverse flow type, one of the triple effect absorption cycles, is studied for performance improvement. The cycle simulation is carried out by using EES(Engineering Equation Solver) program for the working fluid of $H_2O/LiBr$ solution. The split-ratios of solution flow rate, UA of each component, pumping mass flow rate of solution are considered as key parameters. The results show that the optimal SRH (split ratio of high side) and SRL (split ratio of low side) values are 0.596 and 0.521, respectively. Under these conditions, the COP is maximized to 2.1. The optimal pumping mass flow rate is selected as 3 kg/s and the corresponding UAEV A is 121 kW/K in the present system. The present simulation results are compared to the other literature results from Kaita's (2002) and Cho's (1998) triple effect absorption systems. The present system has a lower solution temperature and a higher COP than the Kaita's modified reverse flow, and it also gives a higher COP than the Cho's parallel flow by adjusting split ratios.

Numerical Analysis on Flow Phenomena of the Wake behind the Rectangular Obstacle in the Channel (관내 사각지주 후류의 유동현상에 대한 수치해석)

  • Min Yeong-Ui;Kim Yeon-Soo;Kim You-Gon
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.22-31
    • /
    • 2001
  • The two-dimensional unsteady incompressible viscous flow behind rectangular bluff bodies between two parallel plates was analyzed numerically. The steady state flow and the vortex flow behind rectangular bluff bodies in the channel were investigated for two regimes i.e., the laminar(Re = 100, 300, 500) and the turbulent flows(Re = 10⁴∼10/sup 6/). The vortex shedding was generated by a physical disturbance(6%) numerically imposed at the rear of the bluff bodies for a short time. It was observed that the perturbed flow became periodic after a transient period. And in the case of unsteady inflow, the sinusoidal pulsatile flow was applied as the inlet condition in the turbulent flow of Reynolds number of 1.0×10/sup 5/. FLUENT code was employed to solve the problems. The power-law scheme was used to get stable linearized equations and the PISO algorithm was applied to finding the solution of them.

  • PDF

Micro-PIV Measurement on the droplet formation in a microfluidic channel (미세유체소자 내부에서의 Droplet 형성에 대한 Micro-PIV 측정)

  • Yoon, Sang-Youl;Ko, Choon-Sik;Kim, Jae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1534-1539
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid(PVA 3%) and organic phase fluid(oil) and vector fields measured by a Dynamic Micro-PIV method in the inside of a droplet while generated. Droplet length controlled by changing flow rate conditions in microchannel. Water-in-oil(W/O) droplets successfully generated at a Y junction and cross microchannel. But oil-in-water(O/W) droplets could not be formed at a Y junction microchannel. That is, PVA 3% flow could not be detached from the PDMS surface and ran parallel with oil flow. When PVA 3% flow rate was constant, droplet length and time period decreased as oil flow rate increased, but droplet frequency increased. When PVA 3% and oil flow rate ratio was constant, droplet length and time period decreased as flow rate increased, but droplet frequency increased. All that case, Standard deviation of droplet formation have less than 5% at averaged droplet length and regular-sized droplets were reproducibly formed.

  • PDF

Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor (분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향)

  • CHO, Han Chang;SHIN, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.

A Study of the Experiment and the Calculation Method on the Coolant Flow Rate of Engine and Vehicle Cooling System (엔진 및 차량냉각계의 냉각수유량 측정실험 및 계산방법에 관한 연구)

  • 오창석;유택용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the prediction method of coolant flow rates has been developed and applied to an engine and vehicle cooling system. The flow rate passing through each component of the system is very important parameter to evaluate the heat transfer process form the combustion gas to the coolant and the heat rejection process form the radiator /heater to the ambient air. However, the present study reveals that the measurement using the flowmeter fails to give practical flow rates due to its additive resistance. In contrast, the present method which uses the parallel and serial relationship of flow resistance proved to be a good tool to predict the real flow rates. It can be also used to design the cooling system in the incipient stage of engine/vehicle development . The procedure was coded to the computer program so as to use it flexibly and, in the future, to expand it into an independent design tool of the whole cooling system including the heat release and rejection.

  • PDF