• Title/Summary/Keyword: Parallel-flow

Search Result 1,066, Processing Time 0.029 seconds

Unrelated Parallel Processing Problems with Weighted Jobs and Setup Times in Single Stage (가중치와 준비시간을 포함한 병렬처리의 일정계획에 관한연구)

  • Goo, Jei-Hyun;Jung, Jong-Yun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 1993
  • An Unrelated Parallel Processing with Weighted jobs and Setup times scheduling prolem is studied. We consider a parallel processing in which a group of processors(machines) perform a single operation on jobs of a number of different job types. The processing time of each job depends on both the job and the machine, and each job has a weight. In addition each machine requires significant setup time between processing jobs of different job types. The performance measure is to minimize total weighted flow time in order to meet the job importance and to minimize in-process inventory. We present a 0-1 Mixed Integer Programming model as an optimizing algorithm. We also present a simple heuristic algorithm. Computational results for the optimal and the heuristic algorithm are reported and the results show that the simple heuristic is quite effective and efficient.

  • PDF

Experiments of Turbulent Thermal Mixing Phenomena Using Parallel Non-Isothermal Water Jets

  • Kim, Y.K.;Kim, J.M.;Lee, Y.B.;J.S. Hwang;H.Y. Nam
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.36-41
    • /
    • 1996
  • Turbulent thermal mixing experiments by the injection of two parallel non-isothermal water jets have been performed. The turbulent velocities and fluctuations under the isothermal conditions have been measured using LDV system. The velocity vectors have been plotted in two dimensions from the data measured at 29$\times$16 points. The thermal mixing experiments also have been conducted, where we used 45 K-type thermocouples with a sheath diameter of 0.020" which were fixed with 5 mm distance in a line at a measured height. The measured heights were 5, 10, 20, 30, 40 cm from the upper end of rectangular nozzles. We measured the turbulent temperatures under the various flow velocity conditions with 12$^{\circ}C$ $\leq$ $\Delta$T $\leq$4$0^{\circ}C$. The sampling frequency and sampling time were about 420 Hz and 10 seconds, respectively. The measured results of equal velocity parallel jets were analyzed axially and radially to obtain the variation of temperature fluctuation.tion.

  • PDF

A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System (폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계)

  • Bae, Sukjung;Heo, Hyungseok;Park, Jeongsang;Lee, Hongyeol;Kim, Charnjung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

Separation of Human Breast Cancer and Epithelial Cells by Adhesion Difference in a Microfluidic Channel

  • Kwon, Keon-Woo;Choi, Sung-Sik;Kim, Byung-Kyu;Lee, Se-Na;Lee, Sang-Ho;Park, Min-Cheol;Kim, Pil-Nam;Park, Suk-Ho;Kim, Young-Ho;Park, Jun-Gyul;Suh, Kahp-Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.140-150
    • /
    • 2007
  • A simple, label-free microfluidic cell purification method is presented for separation of cancer cells by exploiting difference in cell adhesion. To maximize the adhesion difference, three types of polymeric nanostructures (50nm pillars, 50nm perpendicular and 50nm parallel lines with respect to the direction of flow) were fabricated using UV-assisted capillary moulding and included inside a polydimethylsiloxane (PDMS) microfluidic channel bonded onto glass substrate. The adhesion force of human breast epithelial cells (MCF10A) and human breast carcinoma (MCF7) was measured independently by injecting each cell line into the microfluidic device followed by culture for a period of time (e.g., one, two, and three hours). Then, the cells bound to the floor of a microfluidic channel were detached by increasing the flow rate of medium in a stepwise fashion. It was found that the adhesion force of MCF10A was always higher than that of MCF cells regardless of culture time and surface nanotopography at all flow rates, resulting in a label-free detection and separation of cancer cells. For the cell types used in our study, the optimum separation was found for 2 hours culture on 50nm parallel line pattern followed by flow-induced detachment at a flow rate of $300{\mu}l/min$.

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

A New Transition Criterion for Stratified and Nonstratified Flows in Pipes

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.219-226
    • /
    • 1996
  • A two-step approach has been used to obtain a new transition criterion for the stratified and nonstratified flow in horizontal pipe: (1) In the first step, a more general expression than the existing models for the flow transition criterion has been derived from the analysis of singular points and neutral stability conditions, or the parallel lines conditions of the transient one-dimensional two- phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple flow transition criterion for horizontal pipes has been derived. Comparison between results predicted by the present theory with the experimental data and theories in the pipe flow conditions, show good agreement.

  • PDF

Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing (회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구)

  • Kim, Youn J.;Jeon, Y.-R
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

Freezing Characteristics in a Horizontal Rectangular Channel with the Two-Dimensional Protuberances (2차원 직사각형 덕트 내부에 돌기부를 갖는 흐름의 동결특성에 관한 연구)

  • Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.721-727
    • /
    • 2003
  • Freezing of turbulent water flow between two horizontal cooled parallel plates with the separated region has been investigated experimentally. The flow separation was induced by vertical plates (two-dimensional plates) situated at the inlet of the rectangular channel. The degree of flow separation was varied by employing vertical thin plates with various heights. Three kinds of the vertical plates with 8.0, 9.8 and 12.5 mm in height were utilized. The Reynolds number and cooling temperature ratio were ranged from $3.45\times10^3 to 1.73\times10^4$ and 7.0 to 20.0 respectively, The measurements show that the flow separation influenced remarkably on the local ice formation characteristics. The location of the first ice layer and the average heat transfer at the ice surface were found be correlated as a function of the Reynolds number, the cooling temperature ratio, and the orifice height ratio.

Numerical Study of Laminar Flow over a Protruding Surface (I) - Flow Analysis - (돌출된 표면 위의 충류유동에 대한 전산 해석적 연구 (I) -유동 해석-)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1418-1425
    • /
    • 1999
  • Flow over a protruding surface is investigated using numerical simulation. We consider flow between two parallel plates with a cube mounted on one side of the channel. As the flow approaches the cube, the adverse pressure gradient produces three-dimensional boundary-layer separation, resulting In the formation of horseshoe vortices. The objective of our study is to clarify both the steady and the unsteady characteristics of the vortex system. As the Reynolds number increases, the structure of the vortices near the cube becomes complex and the number of vortices increases. The distribution of skin friction on the cube-mounted wall reflects the effect of the horseshoe vortices. All these results are consistent with the experimental findings currently available.

Steam Turbine Design Using 3-Dimensional Flow Analysis (3차원 유동 해석을 이용한 증기 터빈 설계)

  • Kwon, G.B.;Kim, Y.S.;Cho, S.H.;Im, H.S.;Nah, U.H.;Kim, H.M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.312-317
    • /
    • 2000
  • High efficient steam turbine stage has been developed with the help of the 3-dimensional design tool. In this stage design, the compound leaned stacking method has been adopted to reduce the secondary flow loss of a turbine passage and to increase the performance efficiency for the turbine nozzles. And the turbine buckets have been designed with the quasi-3-dimensional turbomachinery blade design method. To verify the stage design, therefore, the 3-dimensional numerical simulation of a steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the turbulent flow of a steam turbine stage. The analysis was performed in parallel calculation using the HP N4000 8 CPUs machine. The result showed CFX-TASCflow could be used as the 3-dimensional flow analysis tool of steam turbine design.

  • PDF