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Unrelated Parallel Processing Problems with Weighted Jobs and
Setup Times in Single Stage
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Abstract

An Unrelated Parallel Processing with Weighted jobs and Setup times scheduling prolem 1s
studied. We consider a parallel processing in which a group of processors{machines) perform a
single operation on jobs of a number of different job types. The processing time of each job de-
pends on both the job and the machine, and each job has a weight. In addition each machine re-
quires significant setup time between processing jobs of different job types. The performance
measure is to minimize total weighted flow time in order to meet the job importance and to min-
imize in-process inventory. We present a 0—1 Mixed Integer Programming model as an optimiz-
ing algorithm. We also present a simple heuristic algorithm. Computational resulis for the opti-
mal and the heuristic algorithm are reported and the results show that the simple heuristic is

quite effective and efficient.

1. Introduction

Multiple-product, low to medium volume
productions are currently more important
than single-produci, mass production. Even
though mass production appears to dominate
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several industries, 75% of all parts that are
manufactured in the indusirialized nations
are produced in volume of 50 or less {12].
FMCs are able to satisfy these modern in-
dustrial production requirements: A variety
of parts is produced in low to medium vol-
umes, with low production costs and a high

level of quality.

Machine setup times are significant in the
small volume manufacturing environments.
Whenever there is a switch from processing
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a job of cne type to a job of ancother type, a
setup time 1s Incurred. In many cases, jobs
do not have equal importance or priority.
One way to accommodate this characteris-
tics is to assign a value or weighting factor
to each job and to incorporate the weighting
factors into the performance measure. Many
problems studied in the machine scheduling
literature do not include machine setup
times, while some problems consider only
setup costs. No work has been done on
scheduling of unrelated parallel processing
with weighted jobs and setup times.

Problem statement

In this study we consider a single stage
manufacturing process with unrelated paral-
lel processing, weighted jobs and multiple
job types. In such a system, distinct ma-
chines are used to perform a single opera-
tion on a number of different job types, Ma-
chine setup 1s required if the job iype is
changed during the process. The processing
time for a single job depends on both the job
and the machine because of unrelated pro-
cessing. The setup time for a job type also
depends on both the job type and the ma-
chine. The performance measure 1s to mini-
mize the total weighted flow time. The
major assumptions made in this study are
listed below.

O A set of machines is specified.

O A set of jobs is specified and the type of
each job and processing time on each ma-
chine are known.

OEach job has certain weight and the
weight is known.

O The individual job setup times are known
and are included in the job processing
fimes.

O The setup tumes for each job type on each

machine are known.

O The setup times for different job types are
sequence independent.

O A machine can only work on one job at
any time.

OA job must be processed by one and only
ane machine.

O Preemption is not allowed.

0 All jobs are available initially for process-
ing.

The problem of minimizing makespan or
mean weighted flow time for identical paral-
lel processors without setups is known to be
NP-complete [21]. The problem of minimiz-
ing total weighted flow time for Unrelated
Parallel Processing with Weighted jobs and
Setup times (UPPWS) is more complicated.
No simple method is known to generate an
optimal solution for NP-complete problems
in a short time. Thus, complex optimization
methods, such as branch and bound, or dy-
namic programming, Of Integer prograrm-
ming, may be resorted in order to obtain op-
timal solutions. Unfortunately, due to exces-
sive CPU time and memory requirements,
these methods can handle only small prob-
lems. Therefore, efficient heuristics that pro-
vide near optimal selutions are desirable.

The objectives of this study are 1)} to de-
velop a mathematical programming model
for minimizing the total weighted flow time
and 2) to develop a simple heuristic algo-
rithm for the problem in order to generate
near optimal solutions in short computation-
al time.

2. Literature review

Single stage, Parallel processing
In this section, we will review the schedul-
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. ing algorithms that are related to the single
stage, parallel processing. Parallel pro-
cessors can be classified into three types de-
pending on their speeds as listed below. Let
si; be the processing speed of job } on ma-
chine i. Thus, if machine 1 processes job j, it
requires a total amount of processing time
equal to a/s,; The quantity a, is defined as
the processing time when s;; is qual to 1.

1) Identical processor: If all processors have
equal job processing speeds, then processors
are called identical. That is, s,; = s, for all
machines and jobs.

2} Uniform processor: If the processors dif-
fer in their speeds, but the speed of each pro-
cessor is constant and does not depend on
the jobs, then they are called uniform.

That is, 8,; = s, , for all machines and jobs.
3) Unrelated processor: If there is no partic-
ular relationship for processing speeds, then
they are called unrelated.

While significant effort has been devoted
to studying various aspects of machine
scheduling (Baker [1], Coffman [3],
Rinnooy Kan [17], French [8], Lavwler
[13], Graham et al. [10], Graves [11],
Blazewicz et al. [2], relatively little work
exists on scheduling of parallel processing
with setup times. Particularly, literature on
scheduling of unrelated paraliei processing
with setup times is very scarce. We limit the
review of previous work by discussing sched-
uling on the parallel processing with setup
times,

Parallel processing with setup time.
Identical parallel processing :

The problem of scheduling parallel proces-
sors with sequence dependent setup times
has been addressed by a number of
researchers. Geoffrion and Graves [9] ex-

amined the problem of scheduling parallel
production lines with changeover costs and
formulated it as a quadratic assignment
prblem. Parker et al[15] used a vehicle-
routing algorithm to solve the problem of

" minimizing total setup costs on parallel proc-

eSSOrs.

Tang and Witirock [22] developed a two-
phase heuristic procedure for minimizing
makespan with identical parallel ‘machines
that require minor setups bhetween part
types of the same family, and major setups
between part types of different families.
This heuristic is based on the MULTIFIT al-
gorithm [4] which does not consider setups.
Wittrock [22] described an improved heuris-
tic which 1s similar to the one described
above. Tang [20] presented computational
results from the two-phase heuristic, along
with a tighter lower bound on makespan.
Both procedures address the general case
where setup times may be different for dif-
ferent families.

So [18] considered a similar case with dif-
fering major and minor setup times, but
with machines having a fixed processing ca-
pacity. He developed and compared three
heuristics with the capacity specified as a
parameter that depends on the length of the
scheduling horizon. The objective was to
maximize some total reward function.

Rajgopal and Bidanda [16] examined the
case where major setup times are identical
for all families and minor setup times are
identical for all part types, and no
restriction on machine capacity. Two new
heuristic procedures and one modified heu-
ristic were proposed and tested with respect
to makespan, average flowtime and time
spent on setups.
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Unrelated parallel processing .

Dietrich [6] proposed a two phase heuris-
tic for the nonpreemptive scheduling prob-
lem. This heuristic first assigns jobs to ma-
chines so that some degree of balance is a-
chieved, thus reducing makespan. Then the
jobs assigned to each machine are scheduled
to reduce setup times and minimize flow
time. Dietrich and Escudero [7] also report-
ed on preprocessing thechniques (basically
primal cut generation} to improve an LP re-
laxation bound for the same problem. Unfor-
tunately, the gap between the upper bound
obtained form the heuristic and the lower
bound obtained from the LP relaxation with
preprocessing remained large. The same au-
thors [5] proposed an alternative formula-

" tion which considers explicitly the splitting
of a job type between several machines.
They introduced several sets of additional
variables and significantly 1mproved the
lower bound via a similar primal cut ap-
proach.

Lee [14] proposed a generic hybrid ap-
proximation procedure io generate improved
lower bounds. His study is based on a dual
approach  where  small  decomposed

Lagrangean dual problems are independent-
ly evaluated. Two Lagrangean duals were
constdered—a Lagrangean relaxation dual
and a Lagrangean decomposition dual. The
Lagrangean relaxation dual is first sclved
by a subgradient method to obtain a good in-
itial lower bound for the second stage. Start-
ing with the final multipliers returned from
the first stage, Lee improved the lower
bound by applying a dual ascent method to
the Lagrangean decomposition dual.

3. Mathematical Programming
Model

In this section, we formulate a quadratic
mixed integer programming model for mini-
mizing the total weighted flow time and then
transform it into a mixed integer linear pro-
gramming model.

We will use of the following notations and
defimitions.

Basic notations :
d, set of jobs J={1, 2, ---, n}.
F, set of job types F={1, 2, --- . t},
M, set of machines M={1, 2, ---, m}.
F.CF, set of job types that can be pro-
cessed by machine m.
t{]), type of job J, t(j}<F for all j=J.
JaCJ, set of jobs that can be performed
by machine m.
J.CJ, set of jobs for job type t.
M;CM, set of machines that can process
job .
P, processing time of job | on machine m
for ) &J.. and m&eM.
Semy Setup time for job type t on machine
m.
w; weight of job j for all jEJ.

Definition of variables :
JS%,, job sequence variable
L if job j i1s scheduled on machine m in po-
sition k.
0 otherwise
T8%,, job type sequence variable
1if a job of type t is scheduled on ma-
chine m In position k.
0 otherwise
CT?%, completion time variable
It indicates the completion time of the job
n position k on machine m.
Z%,, setup sequence variable
1 if setup of job type t is required on ma-
chine m in position k.
0 otherwise
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Minimization of the total weighted flow
time for the UPPWS

The objective is to minizize the total
weighted flow time. This problem can be for-
mulated as a quadratic mixed integer pro-
gramming problem : The objective function
18 quadratic and constraints are linear.

Min ;1 w,—( é cT' st )

where m ¢ M; (1)
22]5"—1 Vield 2
mem k

é JS, <k=1,

Vieda Vme M {3

Sk = TS}:{J]m

k=1,.n;, Vijelda ¥meM {4)
i
=1

=1 Fm

k=L.n; V t(j) e Fo; VmeM  (5)
TStm— TSim— Zpm < 0

tHim t{ihm 1im
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Caonstraint {2) forces each job to be sched-
uled exactly one time on one of the ma-
chines. Constraint (3) forces at most one job
to be assigned to a certain sequence on each
machine. Constraint (4) forces the job type
sequence variable to be 1 if the job sequence
variable is 1. Constraint (5) forces at most
one type sequence variable to be 1 to a cer-
tain sequence on each machine. Coenstraint
(6) forces the setup sequence variable to be
1 if job type of the current sequence job is
different from the previous sequence job.
Constraint (7) calculates the completion
time of each position on each machine. Con-
straint (8) forces jobs to be scheduled from
the first position on each machine and forces
jobs to be scheduled continucusly. Constraint
(9) forces the job sequence variables to take
only the values of 0 or 1. Constraints {10),
(11), and (12) force the job type sequence
variables, the setup sequence variahles, and
the completion time variahles to be
nonnegative.

Transformation to a linear programming
model

To transform the above quadratic integer
programming model into a mixed integer lin-
ear programming model, we replace the
product terms CTEXJSE, in the objective
function with new variables X% and intro-
duce new constraints for these variables.
Variables X3, representé the completion time
of job j on machine m if scheduled in posi-
tion k, otherwise the variable can assume
any value, which becomes zero because of
the minimization of the objective function.
The objective function becomes.
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Min % w,-( ! ﬁ x* )where meM,;
=1 m k=1 "
The following consiraints are added to the
original formulation to force the value of X%,
to equal CT% when JS%, is equal to 1, other-
wise it can have any nonnegative value. The
constant u is an arbitrary large value.

Xp 2 CTh —u( - JS5)

YV ojom, k 13
X: >0 k=1,2..n 09

Viedm VmeM

4, Simple Heuristic Algorithm

For a single machine with no setup times,
weighted mean flow time is minimized by
processing jobs in nondecreasing order of
the ratio Py/w; The ordering is referred to
as welghted shortest processing time
{WSPT) sequencing [1].

In this problem, we group Jobs for each
job type and apply the WSPT sequencing in
order to gbtain the optimal sequence within
the group for each machine. After obtaining
the optimal sequence for each group, we
treat each group like a whole job. We calcu-
late group processing time (including setup
times) for each group on each machine and
calculate total weight (w,) for each group t.
We calculate a group ratio (r) for each
group on each machine, which is defined as
the group processing time divided by its
total weight.

rm=(5m+§P}-)/wf YteF,, meM

where w,= > w;
ele

It should be noted, that by treating groups
{which at this stage are assumed to be indi-

visible} as big jobs with weights and process-
ing times equal to the sum of weights and
processing times respectively, of their indi-
vidual jobs, the application of the WSPT
rule will produce minimum weighted flow
time for both groups and individual jobs. To
show that the weighted flow times for indi-
vidual group is minimized, let us consider a
sequence S and a sequence S’ of groups.
Groups A and B are just interchanged in the
sequences S and S, The situation is depicted
in Figure 1. Let C denote the completion
time until the start of group A in S and
group B in 8. C, is the completion time of
group A in 8 and Cp 1s the completion time
of group B in 8. Let ¢: indicate the comple-
tion time of each job i in group A and ¢; indi-
cate the completion time of each job ] in-
group B. Also let w; indicate the weight of
each job i, WT(S) the weighted flow time of
groups in S, WT(S’) the weighted flow time
of groups in S, WT¢ the weighted flow time
of groups up to C, and WTz the weighted
flow time of groups between D and E.

8 ! i | ]

Fig 1. Interchange of contiguous groups

We obtain the weighted flow times of se-
guences S and S,
WT(S) =WTc+ Dwae - C2w + 2uwe, +
CAE_WJ-i- WTe ! J
WT(S") = WTet+ Swe+ Cw,+ Swe+
CoSwt WTe
Thus we have ifol]owing equation.
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WT(S) —WT(S) =CZw,+ C, 2w, ~ C3w;

'_CBZ_W,' !
=(C—C) 2w,— (Cs~C) 2w,

=(Group pro. "time for A) 2w~ (Group

pro. time for B) 2w: '

From the derived equation, we can con-
clude that weighted flow time is minimized
for the individual groups when scheduling
groups in non-decreasing order of their ra-
tios.

After obtaining the group ratios, we start
to assign groups to machines. We first select
the machine(s) which has (have) the small-
est completion time. For the selected ma-
chine(s), we take the smallest group ratio
and assign the group to the machine.

The proposed algorithm is summarized
below.

Simple Heuristic Algorithm :

1. Group Jobs for each job type.

2. Apply the WSPT sequencing for each
group on each machine and obtain the opti-
mal single machine sequence.

3. Calculate the group ratio for each
group on each machine.

4. Select group(s) which can be processed
on only one machine and assign it to the ma-
chine. For more than one group, assign them
in non-decreasing order of their group ratios
on the machine.

5. Select the machine(s} which has
(have) the least completion time. For the se-
lected machine, select the minimum group
ratio. If several machines have the same
minimum completion time, then select the
combination of machine and group with min-
imum group ratio. Assign the associated
group to the machine. At this time, the
group must be placed on the machine such

that the non-decreasing order of the group
ratios on the machine is maintained.

6. Update the completion time for the ma-
chine and repeat Siep 5 until all groups are
scheduled.

7. Calculate the weighted flow time of
each machine and the total weighted flow

time.

5. Computational Experiments

In this section the results of experiments
on the mathematical programming model
and the huristic algorithm are reported. Opti-
mal solutions are generaied by the mathe-
matical programming model and are used to
measure performance of the heuristic algo-
rithm.

To evaluate the effectiveness of the math-
ematical programming model and the heuris-
tic algorithm, two sets of problems were gen-
erated !

Sei 1) 2 machines, 2 job types, and 4
jobs,

Set 2) 2 machines, 4 job types, and 8
jobs.

In each problem set, every machine can
process all job types. Weights of job j, w,
are randomly selected from a discrete uni-
form distribution between 1 and 5. Process-
ing times of job ) on machine m, p, are ran-
domly selected from a discrete uniform dis-
tribution between 1 and 5. Setup times for
job type t on machine m, S, are randomly
selected from a discrete uniform distribution
hetween 1 and 10. In each set, 10 test prob-
lems were generated.

The MPSX/370 was used to solve the
mathematical programming model on an
IBM 3090 model 300E mainframe computer.
FORTRAN computer codes for the heuristic
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algorithm was written and tested on the
same machine,

The heuristic algorithm is evaluated using
two performance measures. soutton quality
and computation speed. The quality of a so-
lution generated by the heuristic algorithm
is measured in terms of its closeness to
optimality. The solution quality is measured
by the following quantity:

Quality measure=1— {V su,— Vop} / Vo
where V., is the value of the solution ob-
tained by the heuristic and V,, is the value
of an optimal solution obtaine using the
mathematical programming model. The heu-

ristic algorithm performs well when this
measure approaches 1. The computation

speed of the algorithm is measured by the
amount of CPU time(reported in seconds)
required to execute the algorithm.

The optimal solution and the soluiion of
the heuristic algorithm were obtained for
each test problem of the set 1 and the set 2.
The results of the computations are pre-
sented for each test problem in Tables 1 and
2. Ineach of these tables, for each problem,
“Math. Pro.” and “Heuristic” refer to the
mathematical programming model and the
simple heuristic algorithm respectively.
Table 3 shows the averages for each set and
the “Number of Optimum” which refers to
the number of times the optimal solution

was obtained by the heuristic algorithm.

Table 1. Computational results for the set 1:
Optimal algorithm versus heuristic atgorithm

Problem CPU time(seconds} Quality
number Math. Pro. Heuristic measure
1 1.98 0.46 1.000
2 4.66 0.47 0.839
3 2.95 0.46 1.004Q
4 4.47 0.45 1.000
5 3.18 (.45 1.000
6 4.21 0.47 1.000 |
7 4.67 0.47 1.000
8 3.65 0.45 1.000
9 4,06 0.46 0.819
10 3.73 0.46 0.886

Based on these resulis, the following ob-
servations can be made concerning the effec-
tiveness and efficiency of the heuristic algo-
rithm.

Firsi, the heuristic algorithm generally
apears to give very good estimates of the op-
timal solutions. This is indicated by the fact
that the quality measures usually exceeded
85% in the individual test run and average

quality measures by sets always exceeded
95% for the heuristic algorithm. For each
set, the number of optimal solutions obtained
with the heuristic algorithm was also good.
It is worth noting that the quality of solu-
tions obtained with the heuristic algorithm
does not seem to decline as the size of prob-
lem increases.

Second, the computational efforts required
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Table 2. Computational results for the set 2!
Optimal algorithm versus heuristic algorithm

Problem CPU time(seconds) Quality
number Math. Pro. Heunstic measure
1 18701.73 0.47 1.000
2 20508.28 0.46 0.992
3 10651.97 0.46 0.986
4 12220.97 047 1.000
5 7825.73 0.47 0.869
6 8193.23 0.46 0.848
7 11882.06 0.47 0.941
8 9260.18 0.47 1.000
9 3210.48 0.46 0.931
10 2094.51 0.47 1.000
Table 3. Averages of computational results for the sets 1 and 2:
Optimail algorithm versus heuristic algorithm
Set CPU time{seconds) Quality Number of
Math. Pro. Heuristic measure Optimum
1 3.472 0.460 0.954 7
2 10451.910 0.466 0.957 4

by the heuristic algorithm seems to indicate
that the algorithm provide very practical ap-
proach for the UPPWS. In contrast to the
optimal algorithm for finding optimal solu-
tioms, for instance, the computational efforts
required by the heuristic algorithm are very
small. As shown in Table 3, the average run-
ning time of the optimal algorithm has in-
creased from about four seconds for the first
set to over 100,000 seconds for the slightly
larger problems in the second set. In con-
trast, the average running times for the heu-
ristic algorithm did not change much be-
tween the two sets.

6. Conclusion and Discussion

The minimization of total weighted flow
time for the Unrelated Parallel Processing

with Weighted jobs and Setup times probiem
has been studied. A mathematical pro-
gramming model has been developed to gen-
erate an optimal solution. The com-
putational results show that obtaining opti-
mal solutions for larger problems would im-
pose a heavy or even prohibitive compu-
tational burden. Therefore, efficient heuristic
algorithms are needed to obtain good esti-
mates of a global optimum. A simple heuris-
tic algorithm has been developed. The com-
putational results show that the heuristic is
very effective and efficient in terms of the
solution quality and the computation time.
The evaluation presented here is only for
smaller problems because of the com-
putational burden for obtaining optimal solu-
tions for larger problems. To evaluate the
performance of the heuristic for larger prob-
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lems, it is desirable to develop lower bound
methods in order to use lower bounds as
benchmarks for comparisons with the heuris-
tic solutions.
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