• Title/Summary/Keyword: Parallel structural analysis

Search Result 243, Processing Time 0.029 seconds

PCG Algorithms for Development of PC level Parallel Structural Analysis Method (PC level 병렬 구조해석법 개발을 위한 PCG 알고리즘)

  • 박효선;박성무;권윤한
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.362-369
    • /
    • 1998
  • The computational environment in which engineers perform their designs has been rapidly evolved from coarse serial machines to massively parallel machines. Although the recent development of high-performance computers are available for a number of years, only limited successful applications of the new computational environments in computational structural engineering field has been reported due to its limited availability and large cost associated with high-performance computing. As a new computational model for high-performance engineering computing without cost and availability problems, parallel structural analysis models for large scale structures on a network of personal computers (PCs) are presented in this paper. In structural analysis solving routine for the linear system of equations is the most time consuming part. Thus, the focus is on the development of efficient preconditioned conjugate gradient (PCG) solvers on the proposed computational model. Two parallel PCG solvers, PPCG-I and PPCG-II, are developed and applied to analysis of large scale space truss structures.

  • PDF

Parallel processing in structural reliability

  • Pellissetti, M.F.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.95-126
    • /
    • 2009
  • The present contribution addresses the parallelization of advanced simulation methods for structural reliability analysis, which have recently been developed for large-scale structures with a high number of uncertain parameters. In particular, the Line Sampling method and the Subset Simulation method are considered. The proposed parallel algorithms exploit the parallelism associated with the possibility to simultaneously perform independent FE analyses. For the Line Sampling method a parallelization scheme is proposed both for the actual sampling process, and for the statistical gradient estimation method used to identify the so-called important direction of the Line Sampling scheme. Two parallelization strategies are investigated for the Subset Simulation method: the first one consists in the embarrassingly parallel advancement of distinct Markov chains; in this case the speedup is bounded by the number of chains advanced simultaneously. The second parallel Subset Simulation algorithm utilizes the concept of speculative computing. Speedup measurements in context with the FE model of a multistory building (24,000 DOFs) show the reduction of the wall-clock time to a very viable amount (<10 minutes for Line Sampling and ${\approx}$ 1 hour for Subset Simulation). The measurements, conducted on clusters of multi-core nodes, also indicate a strong sensitivity of the parallel performance to the load level of the nodes, in terms of the number of simultaneously used cores. This performance degradation is related to memory bottlenecks during the modal analysis required during each FE analysis.

High Performance Hybrid Direct-Iterative Solution Method for Large Scale Structural Analysis Problems

  • Kim, Min-Ki;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • High performance direct-iterative hybrid linear solver for large scale finite element problem is developed. Direct solution method is robust but difficult to parallelize, whereas iterative solution method is opposite for direct method. Therefore, combining two solution methods is desired to get both high performance parallel efficiency and numerical robustness for large scale structural analysis problems. Hybrid method mentioned in this paper is based on FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal method) which has good parallel scalability and efficiency. It is suitable for fourth and second order finite element elliptic problems including structural analysis problems. We are using the hybrid concept of theses two solution method categories, combining the multifrontal solver into FETI-DP based iterative solver. Hybrid solver is implemented for our general structural analysis code, IPSAP.

Parallel O.C. Algorithm for Optimal design of Plane Frame Structures (평면골조의 최적설계를 위한 병렬 O.C. 알고리즘)

  • 김철용;박효선;박성무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.466-473
    • /
    • 2000
  • Optimality Criteria algorithm based on the derivation of reciprocal approximations has been applied to structural optimization of large-scale structures. However, required computational cost for the serial analysis algorithm of large-scale structures consisting of a large number of degrees of freedom and members is too high to be adopted in the solution process of O.C. algorithm Thus, parallel version of O.C. algorithm on the network of personal computers is presented in this Paper. Parallelism in O.C. algorithm may be classified into two regions such as analysis and optimizer part As the first step of development of parallel algorithm, parallel structural analysis algorithm is developed and used in O.C. algorithm The algorithm is applied to optimal design of a 54-story plane frame structure

  • PDF

Study on the Structural Analysis of Small Size Industrial High Speed Parallel Robot (산업용 소형 고속병렬로봇의 구조해석에 관한 연구)

  • Park, Chanhun;Do, Hyun Min;Choi, Taeyong;Kim, ByungIn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.923-930
    • /
    • 2013
  • These days, the interests on the high speed handling robots are increasing because it is important to get down the unit cost of production to get the price competitiveness. The parallel kinematic mechanism is more suitable to implement the high speed robot system as well known. The moving parts of the high speed parallel robot have to be designed for light weight. But the vibration motion is induced by the light weight links because they drive in high acceleration and deceleration. In this reason, the structural analysis of the high speed parallel kinematic robot is very important in the design process. In this paper, the study on the structural analysis of a high speed parallel robot has been done and the research results will be introduced.

Parallel Process System and its Application to Steam Generator Structural Analysis

  • Chang Yoon-Suk;Ko Han-Ok;Choi Jae-Boong;Kim Young-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2007-2015
    • /
    • 2005
  • A large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. Also, the utilization of massively parallel processors has been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The later was constructed using eight processing elements and the former was developed adopting both hierarchical domain decomposition method and balancing domain decomposition method. Then, to verify the efficiency of the established system, it was applied for structural analysis of steam generator in nuclear power plant. Since the prototypal evaluation results agreed well to the corresponding reference solutions it is believed that, after reinforcement of PC cluster by increasing number of processing elements, the promising parallel process system can be utilized as a useful tool for advanced structural integrity evaluation.

Parallel computation for transcendental structural eigenproblems

  • Kennedy, D.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.635-644
    • /
    • 1997
  • The paper reviews the implementation and evaluation of exact methods for the computation of transcendental structural eigenvalues, i.e., critical buckling loads and natural frequencies of undamped vibration, on multiple instruction, multiple data parallel computers with distributed memory. Coarse, medium and fine grain parallel methods are described with illustrative examples. The methods are compared and combined into hybrid methods whose performance can be predicted from that of the component methods individually. An indication is given of how performance indicators can be presented in a generic form rather than being specific to one particular parallel computer. Current extensions to permit parallel optimum design of structures are outlined.