• Title/Summary/Keyword: Parallel motion

Search Result 425, Processing Time 0.024 seconds

The effect of depth discontinuity on spreading of motion aftereffect to non-adapted area (비순응 영역으로의 운동 잔여효과의 번짐에 미치는 삼차원 깊이 불연속의 효과)

  • Kham, Kee-Taek
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.1-24
    • /
    • 2010
  • The stationary image appears to move after we view a moving stimulus for a long time. The motion aftereffect(MAE) can spread to an adjacent region if there is no contrast discontinuity between two regions. In this study, it is investigated whether a phenomenon of MAE spreading to an adjacent non adapting area is affected by the depth discontinuity defined by binocular disparity. In the first experiment a disparity defined slanted pattern was presented in an unadapted region, and in the second experiment, a disparity defined pattern with a different depth was presented on the fronto-parallel plane. Although MAE duration in the condition with slanted pattern was not different from that in the non-slanted pattern condition, MAE durations in the pattern presented on pronto-parallel plane was vividly reduced, but not completely disappeared. These results suggest that a phenomenon of MAE spreading might be affected by depth discontinuity, and could be occurred after binocular information converges.

  • PDF

Efficient Processing Technique for Unavailable Data in Hardware Implementation of Motion Estimator with Parallel Processing Architecture (움직임 추정기의 병렬처리 구조 하드웨어 구현시비유효 데이터의 효율적인처리 방법)

  • Park, Jong-Hwa;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, we propose the efficient processing technique for unavailable data in hardware implementation of motion estimator in H.264/AVC with parallel processing architecture. Motion estimation processing in the hardware is generally based on pipe-lining, some MV data of neighbor blocks are not available, whereas all MV data are valid in software processing where the data are sequentially processed. In this paper, we solve the problem of data being unavailable in MVp computation. To minimize the quality degradation caused by unavailable MVs, in the proposed method, the unavailable MV of a neighboring block is replaced with an integer pel unit MV, an MVp of neighboring blocks, or an MVcol (MV of co-located block). Comparing to the conventional method [7], our method outperformed maximally 0.832dB and 0.179dB for QCIF and CIF, respectively, in terms of BDPSNR.

Analysis of the Snake Motion of a Machine Tool Cross Head Assembly Travelling on Parallel Linear Motion Guides Using a Planar 2-D.O.F. Model (평면 2자유도 모델을 이용한 LMG 상에서 이동되는 Cross Head의 사행동 해석)

  • 최영휴;김성훈;정택수;장은성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-116
    • /
    • 2001
  • In this paper, a simple 2 D.O.F. planar motion model is proposed in order to analyze the snake motion of a machining center cross head assembly, that is travelling on linear guide rails. In the proposed mathematical model, the friction between head and guide ways is neglected, and also the support structures including guide rails, rear- and side-panels of the machining center are assumed to be rigid. The equations of motion of the proposed model are derived and successfully solved to determine vibration responses of the head assembly due to some applied traction forces.

  • PDF

A study on robust multivariable control of stewart platform type motion simulator (스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

Analysis on the Computational complexities of Motion Editing for Graphic Animation (효율적인 애니메이션을 위한 모션 에디팅 방법의 계산량분석에 관한 연구)

  • Lee, Jihong;Kim, Insik;Kim, Sungsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 2002
  • Regarding efficient development of computer graphic animations, lots of techniques for editing or transforming existing motion data have been developed. Basically, the motion transformation techniques follow optimization process. To make the animation be natural, almost all the techniques utilize kinematics and dynamics in constructing constraints for the optimization. Since the kinematic and dynamic structures of virtual characters to be animated are very complex, the most time-consuming part is known to the optimization process. In order to suggest some guide lines to engineers involved in the motion transformation, in this paper, we analyze the computational complexities for typical motion transformation in quantitative manner as well as the possibility for parallel computation.

Design Scheme for a 6-DOF Parallel Haptic Device and Comparative Study on the Singularity-Free Algorithms (6자유도 병렬형 햅틱장치의 설계와 특이점 회피 알고리즘의 비교연구)

  • 김형욱;이재훈;이병주;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1041-1047
    • /
    • 2002
  • It is known that parallel-type mechanisms have many singularities than serial-type mechanisms. In haptic application, these singularities deteriorate the system performance when the haptic system displays the reflecting force. Moreover, different from general manipulators, haptic systems can't avoid the singular point because they are operated by user's random motion command. Although many singularity-free algorithms for serial mechanisms have been proposed and studied. singularity-free algorithms for parallel haptic application have not been deeply discussed. In this paper, various singularity-free algorithms, which are appropriate to parallel haptic system, will be discussedand evaluated.

Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot (4자유도 고속 병렬 로봇의 해석 및 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.

Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator (Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정)

  • 임승룡;임현규;최우천;송재복;홍대희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.

Contour Control Algorithm for Parallel Machine Tool (병렬형 공작기계를 위한 윤곽제어 알고리즘)

  • 이승환;홍대희;최우천;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1003-1006
    • /
    • 2002
  • In machining free-form curves with a machine tool equipped with parallel device, improving contouring accuracy is very important. In this paper, we present contouring control algorithm far parallel machine tool. The relation between the error in Joint space and the error in catesian space is evaluated, and we estimate contouring error vector which efficiently determines the variable gains for the cross coupled control. To show the validity of the algorithm, the contouring control is simulated for free form contour trajectory in cubic parallel machine tool model.

  • PDF

Workspace and Kinematical Characteristics of Planar Parallel Manipulator with Simple (간단한 정기구학을 갖는 평면운동용 병렬 매니플레이터의 구동영역 및 기구학적 특성)

  • 최기봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.97-104
    • /
    • 2003
  • This paper proposes a new parallel manipulator fur plane motion, and then discusses on the workspace and kinematical characteristics of the manipulator. The conventional planar parallel manipulators have some disadvantages which are complex non-closed type direct kinematics, workspaces containing useless voids, and concave type border tines of workspaces. The proposed planar parallel manipulator overcomes the above disadvantages, that is, the manipulator has simple closed type direct kinematics, a void-free workspace, and a convex type borderline of a workspace. This paper shows the simulation result of the workspace as well as performances indices using a homogeneous inverse Jacobian.