• Title/Summary/Keyword: Parallel load control

검색결과 287건 처리시간 0.027초

수중네트워크를 위한 수중패킷 흐름제어기법 (Underwater Packet Flow Control for Underwater Networks)

  • 신수영;박수현
    • 한국멀티미디어학회논문지
    • /
    • 제19권5호
    • /
    • pp.924-931
    • /
    • 2016
  • In this paper, Various network adaptive MAC scheduling technique is proposed to effectively overcome limits of narrow bandwidth and low transmission speed in underwater. UPFC(Underwater Packet Flow Control) is a technique to reduce both the number of transmission and transmission time using three types (Normal, Blocked, Parallel) of data transmission. In this technique, the load information, in which a transmission node have, is transmitted to destination node using marginal bit in reserved header. Then the transmitted information is referred to determine weighting factor. According to the weighting factor, scheduling is dynamically changed adaptively. The performance of UPFC is analyzed and flow control technique which can be applied to Cluster Based Network and Ad Hoc network as well.

Resonance Suppression using Sensorless Control of Dual SPMSMs Fed by Single Inverter

  • Eom, Jae-Boo;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2376-2384
    • /
    • 2018
  • To reduce the size and cost of motor driving systems, several methods for driving multiple parallel-connected motors with a single inverter have been proposed. However, dual PMSMs driven by a single inverter, unlike induction motors, have a problem with instability due to system resonance caused by disturbances such as load imbalance and tolerances between two motors. To drive dual SPMSMs fed by a single inverter, this paper proposes an active damping algorithm to effectively suppress resonance by using one-sided sensorless speed control and position difference estimation. By deriving rotor position difference from d-q current differences between two motors, the proposed method is affected less by position difference estimation errors and is simpler than dual sensorless position estimation.

Versatile Shunt Hybrid Power Filter to Simultaneously Compensate Harmonic Currents and Reactive Power

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1311-1318
    • /
    • 2015
  • This paper introduces a novel topology and an effective control strategy for a shunt hybrid power filter (SHPF) to simultaneously compensate harmonic currents and reactive power. The proposed SHPF topology is composed of an LC passive filter tuned to the 7th harmonic frequency and a small-rated active filter connected in parallel with the inductor Lpf of the LC passive filter. Together with the SHPF topology, we also propose a control strategy, which consists of a proportional-integral (PI) controller for DC-link voltage regulation and a PI plus repetitive current controller, in order to compensate both the harmonic current and the reactive power without the need for additional hardware. Thanks to the effectiveness of the proposed control scheme, the supply current is sufficiently compensated to be sinusoidal and in-phase with the supply voltage, regardless of the distorted and phase lagging of the load current. The effectiveness of the proposed SHPF topology and control strategy is verified by simulated and experimental results.

증기터빈 밸브제어방식에 따른 과속도 제어 고찰 (A Study on Overspeed Control and Valve Position Control for Steam Turbine in Power Plants)

  • 최인규;우주희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1661-1662
    • /
    • 2008
  • After steam turbines in power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy, they regulate the output of generator when synchronized in parallel with the power system. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is "how to limit the speed within its overspeed trip setpoint and escape from danger." In order to implement this purpose, there are various ways different from valve position control. So, in this paper, the various methods for overspeed protection are introduced in comparison with valve position control.

  • PDF

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Wireless Paralleled Control Strategy of Three-phase Inverter Modules for Islanding Distributed Generation Systems

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.479-486
    • /
    • 2013
  • This paper presents a control strategy for distributed systems, which can be used in islanded microgrids. The control strategy is based on the droop method, which uses locally measured feedback to achieve load current sharing. Instead of the traditional droop method, an improved one is implemented. A virtual inductor in the synchronous frame for three-phase inverters is proposed to deal with the coupling of the frequency and the amplitude related to the active and reactive power. Compared with the traditional virtual inductor, the proposed virtual inductor is not affected by high frequency noises because it avoids differential calculations. A model is given for the distributed generation system, which is beneficial for the design of the droop coefficients and the value of the virtual inductor. The effectiveness of the proposed control strategy is verified by simulation and experiment results.

퍼지 제어기를 이용한 병렬 PWM 컨버터의 과도응답특성 개선 (Improvement of Dynamic Response Characteristics of Parallel PWM Converters Using Fuzzy Logic Controller)

  • 민병권;김이훈;김재문;원충연;김규식;최세완
    • 전력전자학회논문지
    • /
    • 제7권3호
    • /
    • pp.303-312
    • /
    • 2002
  • 본 논문에서는 병렬 운전 PWM 컨버터의 고성능 제어를 위하여 우수한 성능을 나타내는 퍼지 제어기를 제안하고 구현하였으며, 제안된 고성능 퍼지 제어기와 Pl 제어기와의 특성 비교를 위하여 PI 제어기도 구현하였다. 시뮬레이션과 실험 결과를 통하여, 특히 부하 급변시 병렬 PWM 컨버터의 U전압 과도응답 특성과 전류제어 과도응답 특성이 기존의 PI 제어기에 비해 제안된 퍼지 제어기가 우수한 특성을 나타내고 있음을 확인하였다. 제안된 퍼지 제어기의 우수한 특성을 입증하고 실제 제품에 적용하기 위하여 7.5kW PWM 컨버터 2대를 병렬 연결한 15kW PWM 컨버터를 구현하고 실험하였다.

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

전기자동차 급속충전기용 넓은 전압 범위를 갖는 30kW급 SiC MOSFET 기반 고속 스위칭 LLC 컨버터 설계 및 병렬 운전 (Design and Parallel Operation of 30 kW SiC MOSFET-Based High Frequency Switching LLC Converter With a Wide Voltage Range for EV Fast Charger)

  • 이기영;민성수;박수성;조영찬;이상택;김래영
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.165-173
    • /
    • 2022
  • The electrification trend of mobility increases every year due to the development of power semiconductor and battery technology. Accordingly, the development and distribution of fast chargers for electric vehicles (EVs) are in demand. In this study, we propose a design and implementation method of an LLC converter for fast chargers. Two 15 kW LLC converters are configured in parallel to have 30 kW rated output power, and the control algorithm and driving sequence are designed accordingly and verified. In addition, the improved power conversion efficiency is confirmed through zero-voltage switching (ZVS) of the LLC converter and reduction of turn-off loss through snubber capacitors. The implemented 30 kW LLC converters show a wide output voltage range of 200-950 V. Experiments applying various load conditions verify the converter performance.