• Title/Summary/Keyword: Parallel load control

Search Result 287, Processing Time 0.026 seconds

A Study on Parallel Operation Between Inverter System and Utility Line (인버터 시스템과 상용 전력 계통과의 병렬 운전에 관한 연구)

  • 천희영;박귀태;유지윤;안호균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.369-378
    • /
    • 1992
  • This paper proposes a utility parallel processing inverter system, which consists of a voltage source PWM inverter, isolation transformer and a reactor linking the inverter to utility line. This system realizes following functions : (1) voltage phase frequency and amplitude synchronization between inverter and utility line at stand-alone mode. (2) current phase synchronization between inverter and load at parallel mode. Therefore, despite sudden increase in load current over setting point at stand-alone mode, inverter system can be transferred into parallel mode immediately without transient current. Furthermore, high frequency(18KHz) PWM control and sinusoidal filtering improve the inverter output waveform by eliminating high order harmonic components as well as low order. As a switching device, IGBT is used for high frequency switching and large current capacity.

  • PDF

Output Phase Synchronization Method of Inverter for Parallel Operation of Uninterruptible Power System (무정전전원장치 병렬운전을 위한 인버터의 출력 위상 동기화 방법)

  • Kim, Heui-Joo;Park, Jong-Myeon;Oh, Se-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • In this paper, we propose the bus/bypass synchronization phase lock loop (B-Sync PLL) method using each phase voltage controller of a parallel UPS inverter. The B-Sync PLL included in each phase voltage control system of parallel UPS inverters has the transient response and the phase synchronization error at grid normal or blackout. The validity of this method is verified by simulation and experiment. As a result, the parallel UPS inverters using the proposed method confirmed that the output phase was continuously synchronized when a grid blackout, improving the transient response characteristics for stable load power supply and equal load sharing.

Study on the Parallel Resonant Inverter of an High Frequency Induction Heating System which the Frequency Tracking and the Power Regulation is possible (주파수 추종과 정전력 제어가 가능한 고주파 유도가열기의 병렬 공진형 인버터에 대한 연구)

  • 김남수;김태언;김승철;임영도
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.63-66
    • /
    • 2002
  • This paper has been studied the parallel resonant inverter which controlling the constant power and tracking the load resonant frequency with PLL is possible, in order to minimize switching losses. The current-fed full-bridge type parallel resonant inverter of an induction heating system was composed of IGBT in switching device. For regulating the output power of an induction heating system, the Fuzzy controller is used. The Fuzzy controller makes the control signal for a stable power regulating control and when reference is changed, it is superior to adaptability. It has been evaluated a stable behavior for a noise with switching and a load disturbance.

  • PDF

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.

A Power Losses Analysis of AC Railway Power Feeding Network using Adaptive Voltage Control (능동형 전압제어를 통한 교류 전기철도 급전망에 대한 전력손실 분석)

  • Jung, Hosung;Kim, Hyungchul;Shin, Seongkuen;Kim, Jinho;Yoon, Kiyong;Cho, Yonghyeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1621-1627
    • /
    • 2013
  • This paper compares power losses between voltage controlled before and after using power conversion device in AC feeding system. For this purpose we present voltage control procedures and criteria and model high speed line and train using PSCAD/EMTDC to compare power losses in various feeding condition. Power losses of the simulation result in power control before and after in single point feeding system was reduced maximum 0.37 MW(23.8 %) and average 0.23 MW(20.5 %) when one vehicle load operates maximum load condition. When three vehicles operate maximum load condition in one feeder section, power losses after voltage control was reduced 1.03 MW(49.5%) compared to before voltage control. And, power loss of parallel feeding system is reduced the average 0.08 MW(7.2 %) compared to the single feeding system. In conclusion, adaptive voltage control method using power conversion device can reduce power losses compared with existing method.

Seamless Transfer Method of BESS Connected by Engine Generator (엔진발전기와 연계된 BESS의 무순단 모드 전환 기법)

  • Shin, Eun-Suk;Kim, Hyun-Jun;Kim, Kyo-Min;Yu, Seung-Yeong;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1709-1717
    • /
    • 2015
  • In remote islands PV (Photo Voltaic) panel with BESS (Battery Energy Storage System) supplies electric power to the customers in parallel operation with EG (Engine Generator) to save fuel consumption and to mitigate environmental load. BESS operates in voltage control mode when it supplies power to the load alone, while it operates in current control mode when it supplies power to the load in parallel with EG. This paper proposes a smooth mode change scheme from current control to voltage control of BESS by adding proper initial value to the integral part of voltage control, and a smooth mode change scheme from voltage control to current control by tracking the EG output voltage to the BESS output voltage using PLL (Phase-Locked Loop). The feasibility of proposed schemes was verified through computer simulations with PSCAD/EMTDC, and the feasibility of actual hardware system was verified by experiments with scaled prototype. It was confirmed that the proposed schemes offer a seamless operation in the stand-alone power system in remote islands.

A vector control method for multiple induction motors (다중모터 구동에서의 벡터제어)

  • Byun, Yeun-Sub;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.649-652
    • /
    • 2003
  • In this paper, we presents a vector control method for the parallel-connected motor drive system. The new estimation scheme of rotor flux position is presented to reduce sensitivity due to load difference between the motors. To confirm the validity of the proposed control method. we compare a simulation result of the proposed control method with that of the conventional indirect vector control method. The simulation results show that the proposed control method is more effective for change in load torque and motor parameters.

  • PDF

Digital Load Sharing Method for Converter parallel Operation (컨버터 병렬운전을 위한 디지털 부하분담 기법)

  • Yoo, Kwang-Min;Kim, Won-Yong;Park, Seung-Hee;Lee, Dong-Hoo;Kim, Yun-Sung;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • This paper presents CAN-based parallel-operation and load-sharing techniques for the communication server power supply. With the load information obtained through CAN communication, each modules performs its current control independently and the power unbalance caused by impedance differences of converter modules can be reduced. In conventional method, slave modules are controlled by master module. On the other hand, the proposed load share algorithm uses the Multi-Master method. Therefore, accurate load sharing can be accomplished by the reference structure of each module's average current. Each converter has two stages and it is separated into PFC, which is responsible for harmonic regulation, and LLC resonant converter, which controls output voltage. To verified the performance of the proposed method, two 2KW prototypes has been implemented and experimented.

Selective Dual Duty Cycle Controlled High Frequency Inverter Using a Resonant Capacitor in Parallel with an Auxiliary Reverse Blocking Switch

  • Saha, Bishwajit;Suh, Ki-Young;Kwon, Soon-Kurl;Mishima, Tomokazu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • This paper presents a new ZCS-PWM high frequency inverter. Zero current switching operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. Dual duty cycle control scheme is used to provide a wide range of high frequency AC output power regulation that is important in many high frequency inverter applications. It found that a complete soft switching operation can be achieved even for low power setting ranges by introducing high-frequency dual duty cycle control scheme. The proposed high frequency inverter is more suitable for consumer induction heating(IH) applications. The operation and control principle of the proposed high frequency inverter are described and verified through simulated results.