• Title/Summary/Keyword: Parallel load control

Search Result 287, Processing Time 0.026 seconds

Droop Control to Compensate Load Voltage Unbalance for Inverter-based Distributed Generations with Unequal Impedance Lines (불균등 임피던스 선로를 갖는 인버터기반 분산전원의 부하전압 불평형을 보상하는 드룹 제어)

  • Yang, Won-Mo;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper proposes a droop control scheme to compensate the unbalanced line-to-line voltage of unbalanced 3-phase load which is coupled with two inverter-based distributed generations through unequal impedance lines. Unbalanced line-to-line load voltages occur due to using single-phase loads, which brings about bad effects on the coupled inverters and the distributed generations. In order to compensate the unbalanced line-to-line voltages, a positive sequence voltage control was used for sharing the active and reactive power and a negative sequence control was used for reducing the negative sequence voltage. The feasibility of the proposed scheme was first verified by computer simulations, and then experiments with a hardware set-up built in the lab. The experimental results were compared with the simulation results to confirm the feasibility of the proposed scheme.

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

New Three-Level PWM DC/DC Converter - Analysis, Design and Experiments

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.30-39
    • /
    • 2014
  • This paper studies a new three-level pulse-width modulation (PWM) resonant converter for high input voltage and high load current applications. In order to use high frequency power MOSFETs for high input voltage applications, a three-level DC converter with two clamped diodes and a flying capacitor is adopted in the proposed circuit. For high load current applications, the secondary sides of the proposed converter are connected in parallel to reduce the size of the magnetic core and copper windings and to decrease the current rating of the rectifier diodes. In order to share the load current and reduce the switch counts, three resonant converters with the same active switches are adopted in the proposed circuit. Two transformers with a series connection in the primary side and a parallel connection in the secondary side are adopted in each converter to balance the secondary side currents. To overcome the drawback of a wide range of switching frequencies in conventional series resonant converters, the duty cycle control is adopted in the proposed circuit to achieve zero current switching (ZCS) turn-off for the rectifier diodes and zero voltage switching (ZVS) turn-on for the active switches. Finally, experimental results are provided to verify the effectiveness of the proposed converter.

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

Three-Phase Reference Current Generator Employing with Kalman Filter for Shunt Active Power Filter

  • Hasim, Ahmad Shukri Abu;Ibrahim, Zulkifilie;Talib, Md. Hairul Nizam;Dardin, Syed Mohd. Fairuz Syed Mohd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.151-160
    • /
    • 2017
  • This paper presents a new technique of reference current generator based on Kalman filter (KF) estimator for three-phase shunt active power filter (APF). The stationary reference frame (d-q algorithm) is used to transform the load currents into DC component. The harmonics of load currents are extracted and the three-phase reference currents are generated using KF estimator. The work is simulated using Matlab/Simulink platform. To validate the simulation results, an experimental test-rig have been perform using real-time control dSPACE DS1104. In addition, hysteresis current control was used to generate the switching signal for the correction of the harmonics in the system. The non-linear load were constructed with three-phase rectifier which connected in series with inductor and parallel with resistor and capacitor. The results shows that the new technique of shunt APF embedded with KF is proven to eliminate the harmonics created by the non-linear load with some improvement on the total harmonics distortion (THD).

Parallel Generation of NC Tool Paths for Subdivision Surfaces

  • Dai Junfu;Wang Huawei;Qin Kaihuai
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • The subdivision surface is the limit of recursively refined polyhedral mesh. It is quite intuitive that the multi-resolution feature can be utilized to simplify generation of NC (Numerical Control) tool paths for rough machining. In this paper, a new method of parallel NC tool path generation for subdivision surfaces is presented. The basic idea of the method includes two steps: first, extending G-Buffer to a strip buffer (called S-Buffer) by dividing the working area into strips to generate NC tool paths for objects of large size; second, generating NC tool paths by parallel implementation of S-Buffer based on MPI (Message Passing Interface). Moreover, the recursion depth of the surface can be estimated for a user-specified error tolerance, so we substitute the polyhedral mesh for the limit surface during rough machining. Furthermore, we exploit the locality of S-Buffer and develop a dynamic division and load-balanced strategy to effectively parallelize S-Buffer.

The Parallel Operation of ZVT-Full Bridge Converter with Dynamic Current Shared Inductor (동적 전류분담 인덕터를 적용한 ZVT 풀 브리지 컨버터의 병렬 운전)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kwon, Soon-Do;Lee, Kyu-Hoon;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.942-945
    • /
    • 2001
  • This paper presents parallel operation of ZVT(Zero Voltage Transition) Full Bridge Converter with Dynamic Current Shared Inductor. In the conventional method, CT(Current Transformer) have been used to share the load current equally with converters. In this system, at parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor divides the same current of unit converter and ZVT circuit aids to high efficiency. This method which is proposed to compare in the conventional method will do simple control circuit. To show the superiority of this converter is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF

A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구)

  • Son, Yung-Deug;Ku, Hyun-Keun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

Analysis of Parallel-Input Series-Output(PISO) Boost Converter With Output Voltage Balancing Characteristic (병렬입력/직렬출력(PISO) 부스트 컨버터의 출력 전압 밸런싱 특성 해석)

  • Nam, Hyun-Taek;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this study, the output voltage balancing characteristics of parallel-input series-output (PISO) boost converter is analyzed. The PISO boost converter is derived by combining two basic boost converters. In comparison with the conventional three-level boost converter, the PISO boost converter can balance the output voltages under an unbalanced load condition without requiring additional circuit components and control strategy. A 2 kW prototype converter is built and tested to verify the output voltage balancing characteristics of the PISO boost converter.