• 제목/요약/키워드: Parallel kinematic machine

검색결과 23건 처리시간 0.027초

기구학적 커플링으로 구성된 3자유도 병렬 메커니즘 해석 및 설계 (Analysis and Design of 3-DOF Parallel Mechanism Based on Kinematic Couplings)

  • 왕위준;한창수
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.479-486
    • /
    • 2012
  • This paper presents a high-speed automatic micro-alignment system that is a part of an inspection machine for small-sized molded lenses of mobile phones, palm-top computers, and so on. This work was motivated by the shortcomings of existing highest-grade commercial machine. A simple tip/tilt/Z parallel mechanism is designed based on kinematic couplings, which is a 3-degree-of-freedom (3-DOF) moderate-cost alignment stage. It is used to automatically adjust the posture of each lens on the tray, which is impossible by the conventional instrument. Amplified piezoelectric actuators are used to ensure the accuracy and dynamic response. Forward kinematic analysis and simulation show that the parasitic motion is small enough compared to the actuator stroke. From the workspace analysis of the moving platform, it is clear that the output motion range satisfies the design requirements.

병렬기구 공작기계의 프로그램 개발 (Development of a CNC Machine using a Parallel Mechanism)

  • 박근우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.679-684
    • /
    • 2000
  • This paper presents the development of system and program for a Parallel-Typed CNC Machine. The system consists of parallel manipulator, PC (Personal Computer), DMC (DSP Motion Controller), and machining tools. In order to control the manipulator, the program, which is implemented in "c/c++" language, involves inverse/direct kinematics, velocity mapping, Jacobian and etc. A controller computes the kinematic formulation in real-time and generates and motion by the DMC. A monitor, which has access to program and sensory information, displays the status of manipulator.nipulator.

  • PDF

Kinematic Analysis and Optimal Design of 3-PPR Planar Parallel Manipulator

  • Park, Kee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.528-537
    • /
    • 2003
  • This paper proposes a 3-PPR planar parallel manipulator, which consists of three active prismatic Joints, three passive prismatic joints, and three passive rotational joints. The analysis of the kinematics and the optimal design of the manipulator are also discussed. The proposed manipulator has the advantages of the closed type of direct kinematics and a void-free workspace with a convex type of borderline. For the kinematic analysis of the proposed manipulator, the direct kinematics, the inverse kinematics, and the inverse Jacobian of the manipulator are derived. After the rotational limits and the workspaces of the manipulator are investigated, the workspace of the manipulator is simulated. In addition, for the optimal design of the manipulator, the performance indices of the manipulator are investigated, and then an optimal design procedure Is carried out using Min-Max theory. Finally. one example using the optimal design is presented.

6 자유도 병렬 공작기계를 위한 동역학 모델링 (Dynamic Modeling for 6-DOF Parallel Machine Tool)

  • 조한상;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1013-1016
    • /
    • 1995
  • This paper deals with dynamics and control of a PRP6-DOF parallel manipulator. Dynamic modeling includes the effect of inertia of all links in the mechanism to increase modeling accuracy. Kinematic analysis about forward and inverse kinematics is also explained. Using Lagrange-D' Alambert method we get equations of motions in a link space which fully represent 6DOF motions of the manipulator.

  • PDF

신경망을 이용한 공작기계 병렬 매니퓰레이터의 기구학 특성 분석 (Analysis on Kinematic Characteristics of a Machine Tool Parallel Manipulator Using Neural Network)

  • 이제섭;고준빈
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.1-7
    • /
    • 2008
  • This paper describes the kinematics which is a new type of parallel manipulator, and the neural network is applied to solving the forward kinematics problem. The parallel manipulator called it as a Stewart platform has an easy and unique solution about the inverse kinematics. However, the forward kinematics is difficult to get a solution because of the lack of an efficient algorithm caused by its highly nonlinearity. This paper proposes the neural network scheme of an Newton-Raphson method alternatively. It is found that the neural network can be improved its accuracy by adjusting the offset of the obtained result.

마찰교반접합장비의 기술개발 동향 (Trends of Technology Development of Friction Stir Welding Machine)

  • 김영표;김철희;김영곤;주성민
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.1-5
    • /
    • 2016
  • At present, FSW(friction stir welding) process is being considered as an actual way for production of various industrial products. However FSW process involves high temperature and load on the tool during welding. These are make a difference between FSW machine and general machine tools. From this reason, development of FSW machine needs very careful consideration on stiffness of machine structure, spindle and moving axis including machine control system. In this study authors investigate on the trends of technology development of FSW machine in order to share the information for more extension of FSW technology with related researchers and engineers.

케이싱 오실레이터의 순기구학 해석 (Forward Kinematic Analysis of Casing Oscillator)

  • 남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.

병렬가공기계용 CFRP의 레이저 용접특성 시뮬레이션 (CFRP Laser Joining Computer Simulation in a Parallel Kinematic Machine)

  • 이승택;박승규;최해운
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.77-82
    • /
    • 2017
  • A computer simulation method is introduced to understand the joining phenomena of PC and CFRP by estimating the temperature of the weld zone. Following the prior or preliminary research, the power range was set between 3 watts and 7 watts, and the scanning speed was set at 500 mm/min and 1,000 mm/min, respectively. Based on the computer simulation, the temperature near the joining boundary was not sufficient at the scanning speed of 1,000 mm/min, regardless of the selected powers. However, the temperature increases above the melting temperature of the selected polymers at the scanning speed of 500 mm/min. The simulation results were compared with actual weld samples to validate its actual use.

전구 자동화 생산기계용 바렐 캠의 형상설계에 관한 연구 (A Study on Design of Barrel Cam for Automatic Bulb Production Machine)

  • 김종수;윤호업
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.89-97
    • /
    • 2003
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then detemines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents shape design of the barrel cam in order to prove the accuracy of the proposed methods

  • PDF