International journal of advanced smart convergence
/
제8권4호
/
pp.194-199
/
2019
As the performance of the system increases, more parallelized data is being processed than single processing of data. Today's cpu structure has been developed to leverage multicore, and hence data processing methods are being developed to enable parallel processing. In recent years desktop cpu has increased multicore, data is growing exponentially, and there is also a growing need for data processing as artificial intelligence develops. This neural network of artificial intelligence consists of a matrix, making it advantageous for parallel processing. This paper aims to speed up the processing of the system by using raspberrypi to implement the cluster building and parallel processing system against the backdrop of the foregoing discussion. Raspberrypi is a credit card-sized single computer made by the raspberrypi Foundation in England, developed for education in schools and developing countries. It is cheap and easy to get the information you need because many people use it. Distributed processing systems should be supported by programs that connected multiple computers in parallel and operate on a built-in system. RaspberryPi is connected to switchhub, each connected raspberrypi communicates using the internal network, and internally implements parallel processing using the Message Passing Interface (MPI). Parallel processing programs can be programmed in python and can also use C or Fortran. The system was tested for parallel processing as a result of multiplying the two-dimensional arrangement of 10000 size by 0.1. Tests have shown a reduction in computational time and that parallelism can be reduced to the maximum number of cores in the system. The systems in this paper are manufactured on a Linux-based single computer and are thought to require testing on systems in different environments.
최근 그래픽 프로세서(GPU)의 발전에 따라 대량의 프로세서를 탑재한 고성능 그래픽 카드가 개인 컴퓨터에서 널리 사용되고 있다. GPU를 사용하여 CPU의 부하를 줄이면서도 성능을 향상시킬 수 있어서 복잡한 연산을 처리해야 하는 다양한 응용 프로그램에 적용하는 연구가 활발히 진행되고 있다. 본 논문에서는 복잡한 연산이 필요한 공간 데이터 처리의 성능을 향상시키기 위하여 GPU의 병렬 처리 기술을 활용하는 방법을 제안하였다. 원본 공간 데이터를 화면에 출력하기 위해서는 그래픽 처리 연산이 필요하며 같은 종류의 연산을 모든 데이터에 적용해야 하므로 GPU의 SIMD 병렬 처리를 사용하여 성능을 향상시킬 수 있다.
All-optical signal processing is expected to offer advantages in speed and power consumption against over electronics signal processing. It has a potential to solve the bottleneck issues of ultra-high speed communication network nodes. All-optical serial-to-parallel and parallel-to-serial data converters would make it possible to easily process the serial data information of a high-speed optical packet without optical-to-electronic-to-optical data conversion. In this paper, we explain the principle of simple and easily expandable all-optical serial-to-parallel and parallel-to-serial data converters based on Mach-Zehnder interferometers. We experimentally demonstrate these data converters at 10Gbit/s serial data rate. They are useful all-optical devices for the all-optical implementations of label decoding, self-routing, control of variable packets, bit-wise logical operation, and data format conversion.
It is essential design process to analyze processing method and set out top level HW configuration using main parameters before implementation of the SAR processor. This paper identifies the impact of the I/O and algorithm structure upon the parallel processing to be assessed and suggests the practical mapping method fur parallel processing to the SAR data. Also, simulation is performed to the E-SAR processor to examine the usefulness of the method, and the results are analyzed and discussed.
This study examined the effects of short and long term playing of video gamer on children's visual parallel processing. All of the 64 fourth grade subjects were above average in IQ. They were classified into high and low video game users. Instruments were a visual parallel processing task consisting of imagery integration items, computers, and the arcade video game, Pac-Man. Subjects were pre-tested with a visual parallel processing task. After one week, the experimental group played video games for 15 minutes, but the control group didn't play. Immediately following this, all children were post-tested by the same task used on the pretest. The data was analyzed by ANCOVA and repeated measures ANOVA. The results showed that relaying short-term video games improved visual parallel processing and that long term experience with video games also affected visual parallel processing. there were no differences between high and low users in visual parallel processing after playing short term video games.
High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.
Recently, there is an increasing demand for applications utilizing maps and locations such as autonomous vehicles and location-based services. Since these applications are developed based on spatial data, interest in spatial data processing is increasing and various studies are being conducted. In this paper, I propose a parallel mining algorithm using the CUDA library to efficiently analyze large spatial data. Spatial data includes both geometric (spatial) and non-spatial (aspatial) attributes. The proposed parallel spatial data mining algorithm analyzes both the geometric and non-spatial relationships between two layers. The experiment was performed on graphics cards containing CUDA cores based on TIGER/Line data, which is the actual spatial data for the US census. Experimental results show that the proposed parallel algorithm using CUDA greatly improves spatial data mining performance.
최근, 멀티미디어 정보처리와 같은 대규모 데이터 처리에 필수적인 입출력 시스템의 성능을 높이기 위하여 많은 관심이 집중되고 있으며, 고성능 병렬화일 시스템에 관한 연구도 이런 노력에 속한다. 본 연구에서는 고성능 병렬화일 시스템을 위한 효율적인 디스크 할당 방법을 제안한다. 즉, 병렬화일의 자료 분산(data declustering)특성을 이용하여 병렬화일에 대한 병렬도 개념을 정의하고, 이를 기반으로 여러 병렬화일들이 동시에 처리되는 경우에, 최대의 작업처리량(throughput)을 얻기 위한 각 병렬화일에 적합한 디스크상의 자료 분산 정도를 계산하는 방법을 제안한다. 또한 동시에 처리되는 병렬화일들이 많이 늘어날수록, 최대의 작업처리량을 얻기 위한 계산이 너무 복잡해지므로, 효율적인 근사 디스크 할당 알고리즘도 아울러 제안한다. 제안된 근사 알고리즘은 계산이 간단하고, 특히 입출력 작업부하(workload)가 높은 환경에서는 매우 효율적임을 보여준다. 또한 입출력 요구들의 도착 비율이 무한대일 경우, 근사 알고리즘만을 이용하여도 최대 작업처리량을 위한 최적 디스크 할당을 얻을 수 있음을 증명하였다.
일반적으로 유도무기의 탐색기와 유도조종장치는 유도탄의 상태를 나타내기 위해 표적, 탐색, 인지, 포착정보를 처리하여 유도무기의 운용 및 제어를 담당하는 역할을 한다. 유도에 필요한 신호는 시선 변화율 신호, 시각 신호, 종말 단계 동체 지향 신호이며, 발사 통제에 필요한 신호는 표적, 감지 신호가 필요하다. 최근 유도탄의 복잡하고 처리하기 어려운 유도탄 신호를 실시간으로 처리하기 위해 유도탄의 데이터 처리 속도를 높여야 한다. 본 연구는 PLINQ(Parallel Language-Integrated Query)의 병렬 알고리즘 방법 중 스톱앤고와 역 열거형 알고리즘을 적용한 후 유도탄 점검 프로그램을 이용하여 실시간으로 유도탄 필요 신호 데이터 처리속도를 비교 후 처리결과를 나타내었다. 도출된 데이터 처리결과 기준으로 다중코어 처리방식과 단독코어 처리방식 CPU(Central Processing Unit) 처리속도 비교, CPU 코어 이용률을 비교하고 병렬처리 알고리즘 적용 시 유도탄 데이터 처리에 효과적 방법을 제안한다.
Kim, Hyeong-Il;Yang, HyeonSik;Yoon, Min;Chang, Jae-Woo
Journal of Information Processing Systems
/
제13권3호
/
pp.518-532
/
2017
Due to the rapid growth of the amount of data, research on bigdata processing has been highlighted. For bigdata processing, CUBRID Shard is able to support query processing in parallel way by dividing the database into a number of CUBRID servers. However, CUBRID Shard can answer a user's query only when the query is required to gain accesses to a single CUBRID server, instead of multiple ones. To solve the problem, in this paper we propose a CUBRID based distributed parallel query processing system that can answer a user's query in parallel and distributed manner. Finally, through the performance evaluation, we show that our proposed system provides 2-3 times better performance on query processing time than the existing CUBRID Shard.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.