

www.kips.or.kr Copyright© 2017 KIPS

Development of a CUBRID-Based Distributed Parallel
Query Processing System

Hyeong-Il Kim*, HyeonSik Yang**, Min Yoon***, and Jae-Woo Chang**

Abstract
Due to the rapid growth of the amount of data, research on bigdata processing has been highlighted. For
bigdata processing, CUBRID Shard is able to support query processing in parallel way by dividing the
database into a number of CUBRID servers. However, CUBRID Shard can answer a user’s query only when
the query is required to gain accesses to a single CUBRID server, instead of multiple ones. To solve the
problem, in this paper we propose a CUBRID based distributed parallel query processing system that can
answer a user’s query in parallel and distributed manner. Finally, through the performance evaluation, we
show that our proposed system provides 2–3 times better performance on query processing time than the
existing CUBRID Shard.

Keywords
CUBRID, Distributed Parallel Environment, Query Processing

1. Introduction

Due to the rapid growth of the amount of data, research on bigdata processing has been highlighted [1-
6]. To extract valuable information from the bigdata, a huge amount of computing resources and
efficient bigdata management system are essential. As a result, research on analytical bigdata processing
has been done to effectively analyze the bigdata. However, the researches have some problems that they
support only limited types of data formats for their applications and require expensive equipment to
establish their computing environment. Meanwhile, NoSQL-based researches, such as Hadoop [7],
MongoDB [8] and Cassandra [9], have been performed. However, NoSQL has a problem that it cannot
guarantee data consistency while supporting partition tolerance and availability. As a result, much
attention has been paid to RDBMSs for bigdata processing.

CUBRID Shard [10] is a RDBM (relational database management system) that was designed to deal
with bigdata. CUBRID Shard divides data into multiple CUBRID servers by applying horizontal
partitioning technique. By distributing the database, CUBRID Shard can process queries of a large
number of users in parallel. However, CUBRID Shard can answer a user’s query only when the query is
required to gain accesses to a single CUBRID server, instead of multiple ones. In other words, it is

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received January 29, 2015; first revision November 6, 2015; second revision November 23, 2016; accepted November 30, 2016.

Corresponding Author: Jae-Woo Chang (jwchang@jbnu.ac.kr)

* The 1st Missile Systems PMO, Agency for Defense Development, Daejeon, Korea (hikim@add.re.kr)
** Dept. of Information and Technology, Chonbuk National University, Jeonju, Korea (gustlr1222@gmail.com, jwchang@jbnu.ac.kr)
*** The 1st R&D Institute - 4th Directorate, Agency for Defense Development, Daejeon, Korea (myoon@jadd.re.kr)

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.01.0016 ISSN 2092-805X (Electronic)

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 519

possible for CUBRID Shard to answer multiple queries in a parallel way by using the database
distributed into several CUBRID servers, but it is impossible to answer a single query in a parallel way
by using the distributed database. Moreover, CUBRID Shard has inconvenience because a user should
state a 'shard_hint' in the SQL query whenever the user wants to issue a query.

To tackle the problem, in this paper we propose a CUBRID based distributed parallel query
processing system that can answer a user’s query in parallel and distributed manner. Because the
proposed system runs on RDBMSs, users who are experienced with SQL statements can easily deal with
the bigdata through SQL queries. Besides general SQL statements, the proposed system can process the
aggregation queries (e.g., min, max, count, sum and average) that have not been dealt with for the
distributed parallel data processing.

The rest of this paper is organized as follows. Section 2 introduces related work. In Section 3, we
present the overall query processing procedure of the proposed system. In Section 4, we compare our
proposed system with the existing CUBRID Shard. Finally, we conclude this paper with future work in
Section 5.

2. Related Work

NoSQL systems are widely used for bigdata and real-time web applications. Hadoop [7], MongoDB
[8], and Cassandra [9] provides us a way for storing and managing unstructured data. NoSQL
approaches provide simple design, horizontal scaling capability, and high availability. The data
structures considered by NoSQL differ from those used in relational database systems, thus making
some operations faster in NoSQL [11-13]. However, NoSQL has a problem that it cannot guarantee
data consistency while supporting partition tolerance and availability. However, the use of low-level
query languages, the shortage of standardized interfaces, and high maturity of the existing RDBMS have
become the barriers to the wider adoption of NoSQL.

As a result, much attention has been paid to RDBMSs for bigdata processing. CUBRID [14] and
CUBRID Shard [10] are typical RDBMSs. First, CUBRID is a relational database that provides high
accuracy, predictable automatic fail-over and fail-back properties. In addition, there is no service down
time even during system maintenance (e.g., OS/software upgrade and device replacement/expansion).
However, CUBRID is inefficient when analyzing bigdata because it is optimized on a single machine.

Fig. 1. Horizontal partitioning of the CUBRID Shard.

Development of a CUBRID-Based Distributed Parallel Query Processing System

520 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

Secondly, to tackle the shortcomings of CUBRID, CUBRID Shard divides database based on a
horizontal partitioning method. For example, as shown in Fig. 1, ‘User’ table in ‘User’ database can be
partitioned into 2 ‘User’ tables (e.g., ‘User’ table #0 and #1). CUBRID Shard allows distributing data
into unlimited number of database shards (or servers). Developers can put their own library into the
system to compute the SHARD_ID using a complicated algorithm. A third-party management tool is
not required. With CUBRID Shard, application developers are not asked to modify their application to
partition their databases into CUBRID Shards because it is automatically supported by the system.
CUBRID Shard provides efficient query processing, distributed load balancing and statement pooling.
In addition, it requires reasonable costs for the configuration of multiple master and slave database
nodes. However, CUBRID Shard can answer a user’s query only when the query is required to gain
accesses to a single CUBRID server, instead of multiple ones. Therefore, CUBRID Shard cannot support
a Join operation that is an essential one to deal with the bigdata. Moreover, CUBRID Shard has
inconvenience because a user should state a 'shard_hint' in the SQL whenever the user wants to issue a
query.

Meanwhile, recent works on analytical processing are as follows. First, Saravanan et al. [15] proposed
an efficient bigdata processing technique by designing a pipelining scheme on the multi-core
environment. They designed left-right (LR) algorithm to reduce stalls in pipelined processors. The main
advantage of the LR algorithm is that it can support the quick data processing for a large amounts of
data. Second, Li et al. [16] proposed a data mining system using an index on the spatial bigdata. They
not only use an R-tree-based global tree to organize real-time location data, but also utilize a B-tree-
based local tree to manage historical data. Both index methods can efficiently handle location-based
queries for monitoring by using JSON query. Finally, Lee et al. [17] proposed a model to extract medical
information from big data using continuity of care document. The proposed model can support
effective management and provision of medical data because it utilizes a convergence data model based
on characteristics and semantic relations of medical data. However, recent works consider only limited
types of data formats for their special applications.

3. CUBRID-Based Distributed Parallel Query Processing System

This section describes our proposed system that supports parallel query processing on the distributed
CUBRID. The proposed system can aid users who are experienced with SQL to easily deal with the
bigdata through SQL queries. In addition, the system can process the aggregation queries that have not
been dealt with for the distributed parallel data processing.

3.1 System Architecture

Fig. 2 shows the overall architecture of our CUBRID based distributed parallel query processing
system. We adopted the system architecture proposed in our previous work [18]. The system consists of
four components; communication component, query analysis component, metadata retrieval component
with meta tables, and query result merge component.

First, a communication component is responsible for data transmission with a user or CUBRID
servers. The transmitted data are SQL query and database connection information such as dbName, ip,

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 521

port, userID and password. Second, a query analysis component is responsible for the parsing of SQL
statements from a user. From a SQL statement, the component obtains table names that are necessary
when retrieving meta tables. The component determines a type of the query, like insert, select, and
aggregation. If the query type is determined as an aggregation query, especially average, the component
rewrites a query statement to process it on multiple database servers. This is because it is impossible to
directly calculate the final result from the average results received from CUBRID servers. Therefore, the
component rewrites the query statement with sum and count operations instead of average operation.
By utilizing these sum and count results, the component can calculate the actual average result. Third,
the metadata retrieval component is responsible for handling three meta tables, like MinMaxTable,
SearchTable, and IpPortTable. Each table is defined below.

Definition 1. MinMaxTable. A meta table which stores information required for data insertion. The

table consists of {dbName, partition, tableName, column, min, max}.

The dbName means a name of a database. The column stands for the name of the column that is used

when horizontally partitioning the tableName table. The partition represents a CUBRID server
maintaining records where the values corresponding to the column are between min and max.

Definition 2. SearchTable. A meta table which stores information required when retrieving data

stored in the distributed CUBRID servers. The table consists of {userID, dbName, tableName, partition}.

By utilizing this table, we can confirm partitions (e.g., CUBRID servers) storing the tableName table

required for processing the query of the userID. The IpPortTable is referenced by both MinMaxTable
and SearchTable because the table contains connection information of each partition.

Definition 3. IpPortTable. A meta table which stores the connection information of CUBRID servers.

The table consists of {partition, ip, port}.

Fig. 2. A usage example of the meta tables.

Development of a CUBRID-Based Distributed Parallel Query Processing System

522 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

The ip and port are network information to connect a partition (e.g., CUBRID server). Fig. 2 shows a
usage example of the meta tables. Assume that the system receives a query like “Select * from Sales”.
Based on the userID (user01), dbName (db01), and tableName (Sales), the metadata retrieval component
retrieves SearchTable to find CUBRID servers required to process the query. From the SearchTable, we
can find that Sales table is distributed on the partition 2 and partition 3. So, the middleware retrieves the
ip and port of these partitions in the IpPortTable to send them the query.

Finally, a query result merge component merges results sent from each CUBRID server. In this case, a
mechanism for receiving each query result without any collisions is required. For this, the system
prepares a buffer for each CBURID server. By doing so, the system can receive the query results without
collisions in parallel way. As a result, the efficiency of the data transmission is greatly improved. Once
the component obtains an actual query result by performing an aggregation, it transmits the actual
query result to the query issuer.

Fig. 3. The query processing procedure.

3.2 Overall Query Processing Procedure

Fig. 3 shows the overall query processing procedure of our CUBRID based distributed parallel query
processing system. First, a user sends an SQL query to our system. Second, our system determines the
type of a user’s query through the query analysis component. The types of a query as follows.

1) Insert phrase: our system distributes data into multiple servers.
2) Select phrase: our system retrieves data being distributed into severs in parallel manner.
3) From phrase: our system finds the required tables to process the user’s query.
4) Join phrase: our system performs an Equi-Join on the distributed CUBRID servers.
5) Where phrase: our system extracts the records that satisfy the conditions being described by the user.
6) Order by phrase: our system sorts query results sent from each CUBRID based on the sorting

conditions.
7) Limit phrase: our system extracts result records as much as the user specifies. Third, our system

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 523

rewrites an SQL query so that the query can be processed on the multiple CUBRID servers. Fourth, our
system extracts table names from a SQL statement by using the query analysis component. Fifth, by
searching the metadata retrieval component, our system confirms a list of CUBRID servers that contain
the required parts of the data for the given query. In addition, it determines the connection information
(e.g., ip and port) of each CUBRID. Sixth, our system constructs packets to be transmitted to each
CUBRID server based on the connection information and the reconstructed query. Seventh, our system
transmits the constructed packets to the selected CUBRID servers by using the communication
component. In addition, our system prepares a buffer for each CBURID server to receive a query result
in parallel way. Eighth, each CUBRID server that receives the query from our system performs query
processing on the data it has. After query processing, each CUBRID server returns a query result to the
communication component of our system. Ninth, through the query result merge component, our system
obtains the final query result by performing an aggregation of the results received from multiple servers.
Finally, our system sends the final query result to the querying user through the communication
component.

3.3 Query Processing Procedure according to the Query Type

In this section, we describe how our system processes each query type in detail. First, we explain the
role of our system for insert phrase that is related to the distributed data insertion. Next, we describe the
select and join phrase that are associated with data retrieval. Then, we deal with mechanisms for various
aggregation functions. Finally, we show how our system processes the order by and limit phrases.

3.3.1 Insert

When our system analyzes that a query includes an insert phrase, the system stores data into the
distributed CUBRID servers. To perform data insertion, the information of the relevant tables should
be maintained in MinMaxTable. If the information of the relevant table does not exist in the
MiMaxTable, our system determines a data partitioning strategy of the table. The data partitioning
strategy is manually determined by an administrator by considering types of columns in the considered
database and the number of CUBRID servers. Then, the administrator inserts {dbName, partition,
tableName, column, min, max} record into the MinMaxTable. By referring the table, our system
automatically stores the data into the appropriate partitions. For example, assuming that an appropriate
partitioning column of the Student table in set1 database is the unique_number column, our system can
construct MinMaxTable as shown in Table 1. The MinMaxTable indicates that the records whose
unique_number values are ranged between 0 and 50 are stored in partition 1. The records whose
unique_number values are between 50 and 100 will be stored in the partition 2.

If the information of the relevant table is maintained in the MiMaxTable, our system executes data
insertion on the appropriate CUBRID servers. For example, assuming that an SQL query is given as
“Insert into employee(unique_number, name) values(10, ‘LEE’)”, our system can know that the data
should be stored in the employee table by analyzing the given SQL query. By checking the
MinMaxTable, our system knows that the employee table is partitioned based on the unique_number
column and records with the unique_number value of 10 corresponds to the partition 1. Then, our
system searches the IpPortTable to confirm the connection information of the partition 1. An example

Development of a CUBRID-Based Distributed Parallel Query Processing System

524 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

of the IpPortTable is shown in Table 2. By searching the IpPortTable, our system can extracts the
connection information (i.e., ip = “111.112.113.111” and port = “8880”) of the partition 1. Therefore,
our system executes the data insertion by transmitting the SQL query to partition 1. As a result, our
system can perform the distributed data insertion.

Table 1. An example of MinMaxTable

dbName partition TableName column min max
set1 1 employee unique_number 0 50
set1 2 employee unique_number 50 100

…

…

…

…

…

…

set1 1 employee unique_number 0 50
set1 2 employee unique_number 50 100

Table 2. An example of IpPortTable

partition IP port
1 111.112.113.111 8880
2 111.112.113.112 8881

… … …

10 111.112.113.120 8890

3.3.2 Select

If our system analyzes that a query includes a select phrase, our system retrieves relevant CUBRID
servers in a distributed way. First, our system determines a list of tables that should be retrieved for the
given query by analyzing the SQL statement. Then, the system retrieves SearchTable to confirm the
information of the relevant tables that are required to process the query. For example, assuming that
user01 transmits a query like “Select * from employee where age=32”, our system can decide that the
Student table should be retrieved for the given query. Assuming that the constructed SearchTable is
given as Table 3, our system can know that the Student table of the user01 is horizontally distributed
into both partition 1 and partition 2. Then, our system searches the IpPortTable to obtain the
connection information of the relevant CUBRID servers. By transmitting the query of user01 to
partition 1 and partition 2 servers, our system can perform data retrieval in a parallel way.

Table 3. An example of SearchTable

id dbName TableName partition
user01 set1 employee 1, 2

… … … …

user09 set1 employee 1

To process the select operation, our system should consider the following property. A query result

generated from each CUBRID server is basically sorted based on a key value even though an order by

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 525

phrase does not exist in the query. Therefore, our system should re-sort each query result transmitted
from each CUBRID server based on the key value to generate the actual query result. To do this, our
system performs the following steps. First, our system confirms the key column of the table that the
query is related to. Second, our system checks a type of the key column. These information can be
defined by using CUBRID API. Third, our system obtains one result record from each buffer that
temporarily stores a query result transmitted from each CUBRID server. Fourth, our system compares
the extracted records based on the type of the key column and sorts them in ascending order of the key.
Then, our system appends the first record of the sorted result to the final result. Fifth, our system
extracts another record from the buffer where the record written to the final result is extracted. At this
time, our system ignores a duplicated record. These steps are repeated until all query results stored in
the buffers are processed. Finally, our system terminates the select query processing by transmitting the
final result to the querying user. Note that this procedure provides good performance when databases
are partitioned based on the key column, which is a general approach in DBMSs.

3.3.3 Join

Our system can process a join query with the following conditions. First, MinMaxTable should
contain the data partitioning strategies of the tables that are described in the query. Second, the tables
should be partitioned based on the identical partitioning column and should follow the same data
partitioning strategy. For example, assuming that our system gets an SQL query like “Select * from
employee, superior where age=32”, our system can execute join operation on employee and superior
tables by using the MinMaxTable shown in Table 1. By searching the Table 1, we can confirm that both
tables use the ID column for data partitioning and the partition 1 is responsible for maintaining records
whose values of the unique_number column are between 0 and 50 for both employee and superior tables.
Because the criteria for join operation are satisfied, our system can execute the join operation on the
tables.

Meanwhile, a procedure to process the query which includes join phrase is as follows. First, our
system analyzes the query to find a list of CUBRID servers which store the designated tables in the given
query. Second, our system sends the query to the selected CUBRID servers and receives a query result
from each CUBRID server. Third, to generate the actual query result, our system merges the query
results sent from CUBRID servers that are participated in the query processing. Finally, our system
terminates the query processing by transmitting the final query result to the querying user.

3.3.4 Aggregation

Our system supports aggregation queries (e.g., min, max, count, sum, average). First, our system
confirms a type of aggregation operations that are requested to process a given query by using the query
analysis component. Based on the type of the aggregation operation, our system computes final result as
follows. (1) If the type of the aggregation operation is min, our system sends the query and receives a
query result (i.e., minimum value) from each CUBRID server. Among them, our system obtains the
smallest value as the final result. (2) If the type of the aggregation operation is max, our system sends the
query and receives a query result (i.e., maximum value) from each CUBRID server. Among them, our
system obtains the largest value as the final result. (3) If the type of the aggregation operation is count,

Development of a CUBRID-Based Distributed Parallel Query Processing System

526 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

our system transmits the query and receives a query result (i.e., the number of records) from each
CUBRID server. Our system calculates the sum of these values and sets the summed value as the final
result. (4) If the type of the aggregation operation is sum, our system sends the query and receives a
query result (i.e., sum) from each CUBRID server. Our system calculates the sum of these values and
sets the calculated result as the final result. (5) If the type of the aggregation operation is average, it is
impossible to obtain the actual average result by using average results transmitted form CUBRID
servers. Thus, our system should reconstruct the given query by using sum and count operations,
instead of directly using the average operation. After our system transmits the query and receives query
results (i.e., count and sum) from each CUBRID server, it can calculate the actual average value (total
sum / total count).

3.3.5 Order by

To process the order by phrase, by analyzing the query, our system checks the number of order by
conditions and designated columns with their data types (e.g., numeric data, character strings) in the
given query. For example, assume that an SQL query is given as “Select * from employee where age=21
Order by unique_number acs, name desc”. By analyzing the SQL query, our system finds that the
number of order by conditions is 2 (i.e.., unique_number acs and name desc). For this query, records
should be sorted by unique_number in ascending order first. If there are records with same
unique_number values, they are sorted by name in descending order. In addition, the middleware
confirms the type of both unique_number and age columns by using CUBRID API. After CUBRID
servers process the query, they send the query result that is sorted based on the order by conditions to
the buffers of the middleware. To make the final query result, our system should re-sort the query
results transmitted from CUBRID servers that are participated in the query processing. The mechanism
for processing the order by phrase is very similar with that of the select phrase. The difference is that the
system sorts the query results based on the order by conditions that are extracted from the query.

3.3.6 Limit

To process the limit phrase, by analyzing the query, our system determines how many records should
be transmitted to the querying user. For example, assume that our system receives a query like “Select *
from employee where age=21 Limit 10”. By analyzing the query, the middleware finds that the number
of result to be sent to the client is 10. The mechanism for processing the limit phrase is very similar with
that of the select phrase. The difference is that the middleware does not read all the query results
transmitted from the CUBRID servers that are participated in the query processing. Our system finishes
processing the query when the system writes the designated number of records to the final result.

4. Performance Evaluation

In this section, we show the extensive experimental results of our CUBRID based distributed parallel
query processing system. Table 4 summarizes the comparison of our system with the existing systems,
with respect to the essential requirement for bigdata processing, i.e., ACID property, SQL query
support, and distributed and parallel processing.

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 527

Table 4. Comparison of the existing schemes with our system
Scheme ACID SQL query support Distributed and parallel processing

Hadoop [7] X O (with Hive) O
MongoDB [8] X X O
Cassandra [9] X X O
CUBRID Shard [10] O O △
Saravanan et al. [15] X X O
Li et al. [16] X X O
Lee et al. [17] X X X
Our middleware O O O

Most of the existing works do not satisfy the ACID feature, except CUBRID-Shard and our system. In

addition, the existing works fail to support a SQL-like query, except CUBRID-Shard and our system.
Although Hadoop can support a SQL-like query, it requires an additional tool, such as Hive [19]. On
the other hand, most of the existing works can support distributed and parallel processing, except Lee et
al.’s work. Because only the CUBRID-Shard can satisfy the three requirements of bigdata processing, we
compared our system with the existing CUBRID Shard, in terms of the query processing time for SQL
operations, such as select, order by, limit, projection, join, and average [20].

However, the CUBRID Shard does not fully support parallel query processing in distributed
environments. If a horizontally divided database of a user is distributed on a number of CUBRID
servers, the CUBRID Shard should send a query of the user to each CUBRID server sequentially.
However, because the CUBRID Shard cannot merge the query results processed by multiple servers, we
implemented a simple merge component for the CUBRID Shard that aggregates the query results sent
by CUBRID servers. But we do not implement the join and aggregation operations because they cannot
be originally supported by the CUBRID Shard. Table 5 show experimental environments for our
performance analysis.

Table 5. Experimental environments

CPU Intel Core i5 Quad-Core 2.90 GHz
Memory 4 GB

O/S Ubuntu 12.4
Compiler g++ 4.6.3

CUBRID version 2.2.0

Fig. 4 shows the query processing time for a select operation by varying the number of data. The

query processing time increases as the number of data becomes larger. When the proportion of result
data is 40% of all data, which means that a user receives 40% of the all data as a result, the query
processing time of our system requires 3.87 seconds. On the other hand, the existing CUBRID Shard
requires 10.49 seconds. On average, our system shows 2.9 times better performance than the CUBRID
Shard. Meanwhile, Fig. 5 depicts the query processing time for an order by operation by varying the
number of data. We set the order by for all attributes. The query processing time increases as the
number of data becomes larger. When the proportion of result data is 40% of all data, our system
requires 5.71 seconds for the query processing while the CUBRID Shard requires 12.69 seconds. On

Development of a CUBRID-Based Distributed Parallel Query Processing System

528 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

average, our system shows 2.8 times better performance than the CUBRID Shard. The more attributes
the order by operation should consider, the more time is required than the select operation.

Fig. 4. The query processing time for select operation.

Fig. 5. The query processing time for order by operation.

For both operations, our system outperforms the CUBRID Shard. The reason is that our system
processes a query in parallel manner on a distributed environment while the CUBRID Shard cannot
support parallel query processing. In addition, the result of each CUBRID server is sent to the buffer
assigned by the query result merge component. So, our system aggregates results in memory as soon as a
set of results are transmitted from each CUBRID server. On the contrary, the CUBRID Shard can
generate a final result after all the results of CUBRID servers are completely written in the file.

Fig. 6 shows the query processing time for a limit operation by varying the number of data. The query
processing time increases as the number of data becomes larger. When the proportion of result data is
20% of all data, our system requires 4.68 seconds for the query processing while the CUBRID Shard
requires 9.13 seconds. On average, our system shows 2.2 times better performance than the CUBRID
Shard. Fig. 7 depicts query processing time for a projection operation by varying the number of data.
For the projection query, we extract one attribute to compare with the performance of the select
operation. When the proportion of data is 40% of all data, our system requires 1.36 seconds for the
query processing. On the other hand, the existing CUBRID Shard requires 3.77 seconds. On average,

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 529

our system shows 2.7 times better performance than the CUBRID Shard. Because the projection query
requires the less number of data to be transmitted, the less time is needed than the select operation. Our
system outperforms the CUBRID Shard because our system supports parallel query processing for a
distributed environment.

Fig. 6. The query processing time for limit operation.

Fig. 7. The query processing time for projection operation.

Fig. 8. The query processing time for join operation.

Development of a CUBRID-Based Distributed Parallel Query Processing System

530 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

Fig. 9. The query processing time for average operation.

The CUBRID Shard cannot support both a join query and an aggregation one. Therefore, we only
provide the performance of our system for the equi-join query and the average query. In case of the join
operation, we use 10,000 data. Fig. 8 depicts the query processing time for the join operation by varying
the number of data. When the proportion of data is 20% of all data, our system requires 0.0125 seconds
for the query processing. On the other hand, Fig. 9 shows the query processing time for the average
operation by varying the number of data. Our system can support the aggregation query, especially the
average query, with the help of the query analysis component. The query processing time increases as
the number of data becomes larger. When the proportion of data is 40% of all data, our system requires
0.17 seconds for the query processing. The query processing time is much less than other operations
because most of the computation is performed on each CUBRID server in a parallel way and the only
aggregated result needs to be transmitted to the client.

5. Conclusions

Due to the rapid growth of the amount of data, research on bigdata processing has been highlighted.
However, the existing works have some problems that they cannot guarantee the ACID properties of
database transactions and fail to support a sql-like query. Therefore, much attention has been paid to
RDBMSs for bigdata processing. For bigdata processing, CUBRID Shard can support parallel query
processing by dividing the database into multiple CUBRID servers. However, CUBRID Shard can
answer a user’s query only when the query is required to gain accesses to a single CUBRID server,
instead of multiple ones.

Therefore, in this paper we proposed a CUBRID based distributed parallel query processing system
that can answer a user’s query in parallel and distributed manner. Our system can allow users to easily
deal with the bigdata through SQL queries. Finally, we showed from our performance evaluation that
our proposed system provides 2–3 times better performance on query processing time than the existing
CUBRID Shard.

As a future work, we have a plan to apply our system to real database applications to show the
efficiency of our system. In addition, we plan to support holistic aggregation operators with reasonable
efficiency by expanding our proposed system.

Hyeong-Il Kim, HyeonSik Yang, Min Yoon, and Jae-Woo Chang

J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017 | 531

Acknowledgement

This work was partly supported by the Human Resource Training Program for Regional Innovation
and Creativity through the Ministry of Education and National Research Foundation of Korea (No.
NRF-2016H1C1A1065816). This work was also supported by Institute for Information &
communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.
R0113-16-0005, Development of an Unified Data Engineering Technology for Large-scale Transaction
Processing and Real-time Complex Analytics).

References

[1] D. H. Lee, “Personalizing information using users’ online social networks: a case study of CiteULike,” Journal of
Information Processing Systems, vol. 11, no. 1, pp. 1-21, 2015.

[2] J. Lv, J. Guo, and H. Ren, “Efficient greedy algorithms for influence maximization in social networks,” Journal of
Information Processing Systems, vol. 10, no. 3, pp. 471-482, 2014.

[3] D. Jiang, G. Chen, B. C. Ooi, K. L. Tan, and S. Wu, “epiC: an extensible and scalable system for processing big
data,” Proceedings of the VLDB Endowment, vol. 7, no. 7, pp. 541-552, 2014.

[4] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the
ACM, vol. 51, no. 1, pp. 107-113, 2008.

[5] H. C. Yang, A. Dasdan, R. L. Hsiao, and D. S. Parker, “Map-reduce-merge: simplified relational data processing
on large clusters,” in Proceedings of the ACM SIGMOD International Conference on Management of Data,
Beijing, China, 2007, pp. 1029-1040.

[6] T. Rabl, S. Gomez-Villamor, M. Sadoghi, V. Muntés-Mulero, H. A. Jacobsen, and S. Mankovskii, “Solving big
data challenges for enterprise application performance management,” Proceedings of the VLDB Endowment, vol.
5, no. 12, pp. 1724-1735, 2012.

[7] Apache Software Foundation, “Apache Hadoop,” 2014 [Online]. Available: http://hadoop.apache.org/.
[8] K. Chodorow, MongoDB: The Definitive Guide, 2nd ed. Sebastopol, CA: O'Reilly Media Inc., 2013.
[9] A. Dietrich, S. Mohammad, S. Zug, and J. Kaiser, “ROS meets Cassandra: data management in smart

environments with NoSQL,” in Proceedings of the 11th International Baltic Conference on DB and IS, Tallinn,
Estonia, 2014.

[10] CUBRID Shard [Online]. Available: http://www.cubrid.com/manual/91/shard.html.
[11] M. Stonebraker, “SQL databases v. NoSQL databases,” Communications of the ACM, vol. 53, no. 4, pp. 10-11,

2010.
[12] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD, vol. 39, no. 4, pp. 12-27, 2011.
[13] J. Han, E. Haihong, and G. Le, “Survey on NoSQL database,” in Proceedings of 2011 6th international conference

on Pervasive computing and applications (ICPCA), Port Elizabeth, South Africa, 2011, pp. 363-366.
[14] CUBRID [Online]. Available: http://www.cubrid.com/.
[15] V. Saravanan, K. D. Pralhaddas, D. P. Kothari, and I. Woungang, “An optimizing pipeline stall reduction

algorithm for power and performance on multi-core CPUs,” Human-centric Computing and Information
Sciences, vol. 5, no. 1, article no. 2, 2015.

[16] Y. Li, D. Kim, and B. S. Shin, “Geohashed spatial index method for a location-aware WBAN data monitoring
system based on NoSQL,” Journal of Information Processing Systems, vol. 12, no. 2, pp. 263-274, 2016.

[17] M. Lee, Y. S. Park, M. H. Kim, and J. W. Lee, “A convergence data model for medical information related to
acute myocardial infarction,” Human-centric Computing and Information Sciences, vol. 6, no. 1, article no. 15,
2016.

Development of a CUBRID-Based Distributed Parallel Query Processing System

532 | J Inf Process Syst, Vol.13, No.3, pp.518~532, June 2017

[18] H. I. Kim, M. Yoon, M. Choi, and J. W. Chang, “A new middleware for distributed data processing in CUBRID
DBMS,” Procedia Computer Science, vol. 52, pp.654-658, 2015.

[19] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: a
warehousing solution over a map-reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp.
1626-1629, 2009.

[20] D. J. DeWitt, “The Wisconsin benchmark: past, present, and future,” University of Wisconsin, 1993.

Hyeong-Il Kim

He received the B.S., M.S., and Ph.D. degrees in computer engineering from
Chonbuk National University, Korea, in 2009, 2011, and 2016, respectively. He is
currently a senior researcher in Agency for Defense Development. His research
interests include database encryption, privacy-preserving query processing, and cloud
computing.

HyeonSik Yang

He is a B.S. in the Chonbuk National University. His research interests include
hardware transaction memory (HTM) and database in parallel environment.

Min Yoon

He received the B.S., M.S., and Ph.D. degrees in computer engineering from
Chonbuk National University, Korea, in 2008, 2010, and 2017, respectively. He is
currently a senior researcher in Agency for Defense Development. His research
interests include privacy preservation in sensor network and database in parallel
environment.

Jae-Woo Chang

He is a professor in the Department of Information and Technology, Chonbuk
National University, Korea from 1991. He received the B.S. degrees in Computer
Engineering from Seoul National University in 1984. He received the M.S. and Ph.D.
degrees in Computer Engineering from Korea Advanced Institute of Science and
Technology (KAIST) in 1986 and 1991, respectively. His research interests include
spatial database, privacy-preserving query processing, and context awareness and
storage system.

