• Title/Summary/Keyword: Parallel current sharing

Search Result 114, Processing Time 0.019 seconds

Current Sharing Control Strategy for IGBTs Connected in Parallel

  • Perez-Delgado, Raul;Velasco-Quesada, Guillermo;Roman-Lumbreras, Manuel
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.769-777
    • /
    • 2016
  • This work focuses on current sharing between punch-through insulated gate bipolar transistors (IGBTs) connected in parallel and evaluates the mechanisms that allow overall current balancing. Two different control strategies are presented. These strategies are based on the modification of transistor gate-emitter control voltage VGE by using an active gate driver circuit. The first strategy relies on the calculation of the average value of the current flowing through all parallel-connected IGBTs. The second strategy is proposed by the authors on the basis of a current cross reference control scheme. Finally, the simulation and experimental results of the application of the two current sharing control algorithms are presented.

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.154-160
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.154-154
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A Novel Control Strategy for Input-Parallel-Output-Series Inverter System

  • Song, Chun-Wei;Zhao, Rong-Xiang;Lin, Wang-Qing;Zeng, Zheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • This paper presents a topology structure and control method for an input-parallel-output-series(IPOS) inverter system which is suitable for high input current, high output voltage, and high power applications. In order to ensure the normal operation of the IPOS inverter system, the control method should achieve input current sharing(ICS) and output voltage sharing(OVS) among constituent modules. Through the analysis in this paper, ICS is automatically achieved as long as OVS is controlled. The IPOS inverter system is controlled by a three-loop control system which is composed of an outer common-output voltage loop, inner current loops and voltage sharing loops. Simulation results show that this control strategy can achieve low total harmonic distortion(THD) in the system output voltage, fast dynamic response, and good output voltage sharing performance.

The Parallel Operation Control of Static UPSs (정지형 UPS의 병렬운전 제어)

  • Min, Byeong-Gwon;Won, Chung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

A study of Multiple parallel Characteristics of 50[W] Virtual Implement of 50[W] Solar Cell modules Using Droop-Method (Droop Method를 이용한 50[W]급 태양전지 가상구현장치의 다중병렬연결 출력특성에 관한 연구)

  • Lee Byung-In;Lee Sang-Yong;Jung Byung-Hwan;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.81-84
    • /
    • 2003
  • For increasing power of photovoltaic systems, serial and parallel connection needed. In parallel connection, a desirable characteristic of parallel-connected supply system is that individual converters share the load current equally and stably. The current sharing(CS) can be implemented using two approaches. The first one, known as a Droop method, and the other is Active current-sharing. In Droop method, current distribution characteristics relies on the high output impedance of each converter. This scheme is more simple and no need interconnections. but also has a disadvantages of degrading current sharing characteristics. In this paper, using droop method at multiful-parallel connection with it's convenience and simplicity.

  • PDF

Master-Slave type DC-DC Converters Parallel Operation by ZCT method (ZCT방식의 master-slave형 DC-DC컨버터 병렬운전)

  • 박상은;송승찬;진정태;이기홍;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.655-658
    • /
    • 1999
  • In this paper, Parallel operation of two DC-DC converters which we have ever done before need two CTs to do load current sharing. However, we have proposed a new method called ZCT method that can share load current with only a CT as doing parallel operation two converters with same converter capacity. To confirm parallel performance by a proposed DC-DC converter parallel operation method, we have done computer simulation and experiment. It is certain that we have showed to achieve two converters current sharing performance efficiently through simulation and experiment at result.

  • PDF

Parallel operation of VISC system for 3[kw] solar cell (3[kw]급 태양전지 가상구현시스템의 병렬운전)

  • Lee S.Y.;Jeong B.H.;Oh B.W.;Lee B.I.;Choe G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.957-960
    • /
    • 2003
  • Many solar cell way need to be connected by series or parallel to extract the high power Especially, during parallel operation to reduce circulation current the individual converter has to share and control the load current. Generally, Current Sharing(CS) can be implemented using droop and active current sharing method. In this paper, one 3[KW] PWM converter was replaced as one 3[KW] solar cell array(3 parallels, each parallel has twenty single modules), two 3[KW] solar cell way Is Paralleled to generate 6[KW] power. Also each converter used voltage-current controller and Automatic MSCPM(Master-Slave Current-programming Method) for current sharing(AS).

  • PDF

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Improved Droop Method for Converter Parallel Operation in Large-Screen LCD TV Applications

  • Kim, Jung-Won;Jang, Paul
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2014
  • Current sharing between modules in a converter parallel operation is very important for the reliability of the system. This paper proposes an improved droop method that can effectively improve current sharing accuracy. The proposed method adaptively adjusts the output voltage set-point of each module according to the current set-points. Unlike conventional droop control, modules share a signal line to communicate with each other. Nevertheless, since signals are simple and in digital form, the complexity of the circuitry is much less and noise immunity is much better than those of conventional methods utilizing communication. The operation principle and design procedure of the proposed method are described in detail. Results of the experiment on two boost converters operating in parallel under the specification of a TFT LCD TV panel power supply verify the validity of the proposed scheme.