• Title/Summary/Keyword: Parallel and Distributed Computing

Search Result 153, Processing Time 0.022 seconds

Fuzzy Inference of Large Volumes in Parallel Computing Environments (병렬컴퓨팅 환경에서의 대용량 퍼지 추론)

  • 김진일;이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • In fuzzy expert systems or database systems that have volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environments. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy or data, the parallel fuzzy inference algortihm extracts effective and achieves and achieves a good speed factor.

  • PDF

Hybrid Parallelization for High Performance of CFD_NIMR Model (기상 모델 CFD_NIMR의 최적 성능을 위한 혼합형 병렬 프로그램 구현)

  • Kim, Min-Wook;Choi, Young-Jean;Kim, Young-Tae
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.109-115
    • /
    • 2012
  • We parallelized the CFD_NIMR model, which is a numerical meteorological model, for best performance on both of distributed and shared memory parallel computers. This hybrid parallelization uses MPI (Message Passing Interface) to apply horizontal 2-dimensional sub-domain out of the 3-dimensional computing domain for distributed memory system, as well as uses OpenMP (Open Multi-Processing) to apply vertical 1-dimensional sub-domain for utilizing advantage of shared memory structure. We validated the parallel model with the original sequential model, and the parallel CFD_NIMR model shows efficient speedup on the distributed and shared memory system.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

High Resolution Rainfall Prediction Using Distributed Computing Technology (분산 컴퓨팅 기술을 이용한 고해상도 강수량 예측)

  • Yoon, JunWeon;Song, Ui-Sung
    • Journal of Digital Contents Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Distributed Computing attempts to harness a massive computing power using a great numbers of idle PCs resource distributed linked to the internet and processes a variety of applications parallel way such as bio, climate, cryptology, and astronomy. In this paper, we develop internet-distributed computing environment, so that we can analyze High Resolution Rainfall Prediction application in meteorological field. For analyze the rainfall forecast in Korea peninsula, we used QPM(Quantitative Precipitation Model) that is a mesoscale forecasting model. It needs to a lot of time to construct model which consisted of 27KM grid spacing, also the efficiency is degraded. On the other hand, based on this model it is easy to understand the distribution of rainfall calculated in accordance with the detailed topography of the area represented by a small terrain model reflecting the effects 3km radius of detail and terrain can improve the computational efficiency. The model is broken down into detailed area greater the required parallelism and increases the number of compute nodes that efficiency is increased linearly.. This model is distributed divided in two sub-grid distributed units of work to be done in the domain of $20{\times}20$ is networked computing resources.

Design and Implementation of a Grid System META for Executing CFD Analysis Programs on Distributed Environment (분산 환경에서 CFD 분석 프로그램 수행을 위한 그리드 시스템 META 설계 및 구현)

  • Kang, Kyung-Woo;Woo, Gyun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.6 s.103
    • /
    • pp.533-540
    • /
    • 2006
  • This paper describes the design and implementation of a grid system META (Metacomputing Environment using Test-run of Application) which facilitates the execution of a CFD (Computational Fluid Dynamics) analysis program on distributed environment. The grid system META allows the CFD program developers can access the computing resources distributed over the network just like one computer system. The research issues involved in the grid computing include fault-tolerance, computing resource selection, and user-interface design. In this paper, we exploits an automatic resource selection scheme for executing the parallel SPMD (Single Program Multiple Data) application written in MPI (Message Passing Interface). The proposed resource selection scheme is informed from the network latency time and the elapsed time of the kernel loop attained from test-run. The network latency time highly influences the executional performance when a parallel program is distributed and executed over several systems. The elapsed time of the kernel loop can be used as an estimator of the whole execution time of the CFD Program due to a common characteristic of CFD programs. The kernel loop consumes over 90% of the whole execution time of a CFD program.

The Parallel ANN(Artificial Neural Network) Simulator using Mobile Agent (이동 에이전트를 이용한 병렬 인공신경망 시뮬레이터)

  • Cho, Yong-Man;Kang, Tae-Won
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.615-624
    • /
    • 2006
  • The objective of this paper is to implement parallel multi-layer ANN(Artificial Neural Network) simulator based on the mobile agent system which is executed in parallel in the virtual parallel distributed computing environment. The Multi-Layer Neural Network is classified by training session, training data layer, node, md weight in the parallelization-level. In this study, We have developed and evaluated the simulator with which it is feasible to parallel the ANN in the training session and training data parallelization because these have relatively few network traffic. In this results, we have verified that the performance of parallelization is high about 3.3 times in the training session and training data. The great significance of this paper is that the performance of ANN's execution on virtual parallel computer is similar to that of ANN's execution on existing super-computer. Therefore, we think that the virtual parallel computer can be considerably helpful in developing the neural network because it decreases the training time which needs extra-time.

A Study on Distributed System Construction and Numerical Calculation Using Raspberry Pi

  • Ko, Young-ho;Heo, Gyu-Seong;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.194-199
    • /
    • 2019
  • As the performance of the system increases, more parallelized data is being processed than single processing of data. Today's cpu structure has been developed to leverage multicore, and hence data processing methods are being developed to enable parallel processing. In recent years desktop cpu has increased multicore, data is growing exponentially, and there is also a growing need for data processing as artificial intelligence develops. This neural network of artificial intelligence consists of a matrix, making it advantageous for parallel processing. This paper aims to speed up the processing of the system by using raspberrypi to implement the cluster building and parallel processing system against the backdrop of the foregoing discussion. Raspberrypi is a credit card-sized single computer made by the raspberrypi Foundation in England, developed for education in schools and developing countries. It is cheap and easy to get the information you need because many people use it. Distributed processing systems should be supported by programs that connected multiple computers in parallel and operate on a built-in system. RaspberryPi is connected to switchhub, each connected raspberrypi communicates using the internal network, and internally implements parallel processing using the Message Passing Interface (MPI). Parallel processing programs can be programmed in python and can also use C or Fortran. The system was tested for parallel processing as a result of multiplying the two-dimensional arrangement of 10000 size by 0.1. Tests have shown a reduction in computational time and that parallelism can be reduced to the maximum number of cores in the system. The systems in this paper are manufactured on a Linux-based single computer and are thought to require testing on systems in different environments.

On Effective Slack Reclamation in Task Scheduling for Energy Reduction

  • Lee, Young-Choon;Zomaya, Albert Y.
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.175-186
    • /
    • 2009
  • Power consumed by modern computer systems, particularly servers in data centers has almost reached an unacceptable level. However, their energy consumption is often not justifiable when their utilization is considered; that is, they tend to consume more energy than needed for their computing related jobs. Task scheduling in distributed computing systems (DCSs) can play a crucial role in increasing utilization; this will lead to the reduction in energy consumption. In this paper, we address the problem of scheduling precedence-constrained parallel applications in DCSs, and present two energy- conscious scheduling algorithms. Our scheduling algorithms adopt dynamic voltage and frequency scaling (DVFS) to minimize energy consumption. DVFS, as an efficient power management technology, has been increasingly integrated into many recent commodity processors. DVFS enables these processors to operate with different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. Our algorithms effectively balance these two performance goals using a novel objective function and its variant, which take into account both goals; this claim is verified by the results obtained from our extensive comparative evaluation study.