• Title/Summary/Keyword: Parallel Supersonic-subsonic Wake

Search Result 2, Processing Time 0.018 seconds

Numerical Study on the Mixing Enhancement of Parallel Supersonic-subsonic Wakes Using Wall Cavities (공동을 이용한 초음속-아음속 평행류에서의 혼합증대에 관한 수치적 연구)

  • Moon, Seong-Mok;Chang, Se-Myong;Kim, Chong-Am;Lee, Kyoung-Hoon;Kim, In-Soo;Ahn, Su-Hong;Woo, Kwan-Je
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.353-356
    • /
    • 2010
  • A computational study on the enhancement of parallel supersonic-subsonic mixing wakes is conducted and compared with available experimental data. The first aim of the present work is to show a direct comparison between numerical predictions and equivalent experimental data for the baseline case. The Pitot pressure distribution data are in good agreement between computation and experiment, and the results show that Menter's SST model with the compressibility correction gives the best performance. Further we investigate the effects of primary parameters such as the position of the cavity, and the arrangement of the cavity at the given flow condition.

  • PDF

Mixing Augmentation of the Compressible Parallel Jets Using the Irradiation of Ultrasonic Waves (초음파 조사를 이용한 압축성 평행 제트의 활성화)

  • Chang Se-Myong;Shin Seong-Ryong;Lee Soogab
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138-143
    • /
    • 2001
  • An experimental model to enhance the mixing of parallel supersonic-subsonic jet ($M_1$=1.78 and $M_2$=0.30) is simulated with a numerical technique by modeling the wall-mounted cavity to a boundary condition of oscillating pressure. The computed pilot pressure distributions along three representative cross sections show a good agreement with the equivalent experimental data. The irradiation of acoustic wave in the ultrasonic range causes the mixing augmentation of jet and wake due to the transfer of vibration energy between fluid particles.

  • PDF