• Title/Summary/Keyword: Parallel Integration

Search Result 159, Processing Time 0.028 seconds

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

Aging-Friendly Outdoor Exercise Environmental Design Guideline With Universal Design (유니버설디자인을 적용한 고령친화형 운동환경 디자인 가이드라인)

  • Lee, Yeunsook;Ahn, Changhoun;Lee, Dongjoo
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.47-57
    • /
    • 2012
  • The purpose of this study is to develop an aging friendly guideline aging friendly outdoor exercise environment in Universal design aspect. The aim for this guideline is to suggest a creative method to cope with forthcoming aging society and meet the various demands of all park users. Documentary survey and field survey were used to extract notion of universal design and aging friendly design; based from the extracted notions three types of exercise environment were suggested, Small scale, Medium scale and Large scale. The significant of this guideline is as fallow: First, negative aspects of aging friendly design can be eliminated by adopting universal design; therefore the guideline can have social integration aspect. Second, reflected needs of residents can be suggested on the guideline; and it was extracted from documentary survey, PPP UD checklist and field survey. Third, classifying universal design and aging friendly design in one guideline can enhance ability to manage various composition of population. Fourth, by studying young child and old people's likeness and parallel resemblance, design guideline for forthcoming aging society can be suggested. Fifth, from three developed exercise environments, the guideline can be applied into different conditions of location. Sixth, canopy type design model can be very useful for old people.

Performance Analysis of a Vector DLL Based GPS Receiver

  • Lim, Deok Won;Choi, Heon Ho;Lee, Sang Jeong;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • For a Global Positioning System (GPS) receiver, it is known that a Vector Delay Locked Loop (DLL) in which the code signals of each satellite are tracked in parallel by using navigation results shows better performance in the aspect of the tracking accuracy and the robustness than that of a Scalar DLL. However, the quantitative analysis and the logical grounds for that performance enhancement of the Vector DLL are not sufficient. This paper, therefore, proposes the structure of the GPS receiver with the Vector DLL and analyzes the performance of it. The tracking and the positioning accuracy of the Vector DLL are theoretically analyzed and confirmed by simulation results. From the simulation results, it can be seen that the tracking and positioning accuracy has been improved about 30% in case that the receiver is static and the positioning is conducted for every Pre-detection Integration Time (PIT) while C/N0 is 45 dB-Hz.

A miniaturized attitude estimation system for a gesture-based input device with fuzzy logic approach

  • Wook Chang;Jing Yang;Park, Eun-Seok;Bang, Won-Chul;Kang, Kyoung-Ho;Cho, Sung-Jung;Kim, Dong-Yoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.616-619
    • /
    • 2003
  • In this paper, we develop an input device equipped with accelerometers and gyroscopes. The installed sensors measure the inertial measurements i.e., accelerations and angular rates produced by the movement of the system when a user is writing on the plane surface or in the three dimensional space. The gyroscope measurement are integrated once to give the attitude of the system and consequently used to remove the gravity included in the acceleration measurements. The compensated accelerations bin doubly integrated to yield the position of the system. Due to the integration processes involved in recovering the users'motions, the accuracy of the position estimation significantly deteriorates with time. Among various error sources of the system incorrect estimation of attitude causes the largest portion of the positioning error since the gravity is not fully cancelled. In order to solve this problem, we propose a Kalman filler-based attitude estimation algorithm which fuses measurement data from accelerometers and gyroscopes by fuzzy logic approach. In addition, the online calibration of the gyroscope biases are performed in parallel with the attitude estimation to give more accurate attitude estimation. The effectiveness and the feasibility of the presented system is demonstrated through computer simulations and actual experiments.

  • PDF

Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System (가스터빈/연료전지 혼합형 고효율 발전시스템 개발)

  • Kim Jae Hwan;Park Poo Min;Yang Soo Seok;Lee Dae Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

Development of Auto-Parking Algorithm for Driving in Urban (무인차량의 자동주차 알고리즘 개발)

  • Cho, Kyoung-Hwan;Chung, Jin-Wok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2360-2366
    • /
    • 2011
  • The Unmanned Ground Vehicle is comprised of four systems of obstacle detection: The navigation system, vehicle controlling system, obstacle detecting and an integration system that use the various sensors. The research introduced utilizes 6 lasers to recognize obstacles. The system operates an avoidance system within the unmanned ground vehicle, using six lasers. The Unmanned Ground Vehicle's parallel parking and right angle parking is in development using algorithms. This algorithms' certification is intended to be installed in the encoder, in the GPS. By using the Laser Scannerfor the position's calculation, errors are both reduced and minimized, so the tire's slip minimized to the point where the vehicle had a limit of about 5Km/h.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Jang Kwon-Kyu;Kwon Oh-Shin;Joo Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Gas Effect at High Temperature on the Supersonic Nozzle Conception

  • Boun-jad, Mohamed;Zebbiche, Toufik;Allali, Abderrazak
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.82-90
    • /
    • 2017
  • The aim of this work is to develop a new computational program to determine the effect of using the gas of propulsion of combustion chamber at high temperature on the shape of the two-dimensional Minimum Length Nozzle giving a uniform and parallel flow at the exit section using the method of characteristics. The selected gases are $H_2$, $O_2$, $N_2$, CO, $CO_2$, $H_2O$, $NH_3$, $CH_4$ and air. All design parameters depend on the stagnation temperature, the exit Mach number and the used gas. The specific heat at constant pressure varies with the temperature and the selected gas. The gas is still considered as perfect. It is calorically imperfect and thermally perfect below the threshold of dissociation of molecules. A error calculation between the parameters of different gases with air is done in this case for purposes of comparison. Endless forms of nozzles may be found based on the choise of $T_0$, $M_E$ and the selected gas. For nozzles delivering same exit Mach number with the same stagnation temperature, we can choose the right gas for aerospace manufacturing rockets, missiles and supersonic aircraft and for supersonic blowers as needed in settings conception.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.