• Title/Summary/Keyword: Parallel Genetic Algorithm

Search Result 208, Processing Time 0.026 seconds

Parallel Genetic Algorithm based on a Multiprocessor System FIN and Its Application to a Classifier Machine

  • 한명묵
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.61-71
    • /
    • 1998
  • Genetic Algorithm(GA) is a method of approaching optimization problems by modeling and simulating the biological evolution. GA needs large time-consuming, so ti had better do on a parallel computer architecture. Our proposed system has a VLSI-oriented interconnection network, which is constructed from a viewpoint of fractal geometry, so that self-similarity is considered in its configuration. The approach to Parallel Genetic Algorithm(PGA) on our proposed system is explained, and then, we construct the classifier system such that the set of samples is classified into weveral classes based on the features of each sample. In the process of designing the classifier system, We have applied PGA to the Traveling Salesman Problem and classified the sample set in the Euclidean space into several categories with a measure of the distance.

  • PDF

A Genetic Algorithm for Minimizing Total Tardiness with Non-identical Parallel Machines (이종 병렬설비 공정의 납기지연시간 최소화를 위한 유전 알고리즘)

  • Choi, Yu-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This paper considers a parallel-machine scheduling problem with dedicated and common processing machines using GA (Genetic Algorithm). Non-identical setup times, processing times and order lot size are assumed for each machine. The GA is proposed to minimize the total-tardiness objective measure. In this paper, heuristic algorithms including EDD (Earliest Due-Date), SPT (Shortest Processing Time) and LPT (Longest Processing Time) are compared with GA. The effectiveness and suitability of the GA are derived and tested through computational experiments.

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

A Genetic Approach for Joint Link Scheduling and Power Control in SIC-enable Wireless Networks

  • Wang, Xiaodong;Shen, Hu;Lv, Shaohe;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1679-1691
    • /
    • 2016
  • Successive interference cancellation (SIC) is an effective means of multi-packet reception to combat interference at the physical layer. We investigate the joint optimization issue of channel access and power control for capacity maximization in SIC-enabled wireless networks. We propose a new interference model to characterize the sequential detection nature of SIC. Afterward, we formulize the joint optimization problem, prove it to be a nondeterministic polynomial-time-hard problem, and propose a novel approximation approach based on the genetic algorithm (GA). Finally, we discuss the design and parameter setting of the GA approach and validate its performance through extensive simulations.

A Genetic Algorithm-based Scheduling Method for Job Shop Scheduling Problem (유전알고리즘에 기반한 Job Shop 일정계획 기법)

  • 박병주;최형림;김현수
    • Korean Management Science Review
    • /
    • v.20 no.1
    • /
    • pp.51-64
    • /
    • 2003
  • The JSSP (Job Shop Scheduling Problem) Is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. we design scheduling method based on SGA (Single Genetic Algorithm) and PGA (Parallel Genetic Algorithm). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling method based on genetic algorithm are tested on five standard benchmark JSSPs. The results were compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement at a solution. The superior results indicate the successful Incorporation of generating method of initial population into the genetic operators.

Analysis of Improved Convergence and Energy Efficiency on Detecting Node Selection Problem by Using Parallel Genetic Algorithm (병렬유전자알고리즘을 이용한 탐지노드 선정문제의 에너지 효율성과 수렴성 향상에 관한 해석)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.953-959
    • /
    • 2012
  • There are a number of idle nodes in sensor networks, these can act as detector nodes for anomaly detection in the network. For detecting node selection problem modeled as optimization equation, the conventional method using centralized genetic algorithm was evaluated. In this paper, a method to improve the convergence of the optimal value, while improving energy efficiency as a method of considering the characteristics of the network topology using parallel genetic algorithm is proposed. Through simulation, the proposed method compared with the conventional approaches to the convergence of the optimal value was improved and was found to be energy efficient.

A Parallel Genetic Algorithm for Solving Deadlock Problem within Multi-Unit Resources Systems

  • Ahmed, Rabie;Saidani, Taoufik;Rababa, Malek
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.175-182
    • /
    • 2021
  • Deadlock is a situation in which two or more processes competing for resources are waiting for the others to finish, and neither ever does. There are two different forms of systems, multi-unit and single-unit resource systems. The difference is the number of instances (or units) of each type of resource. Deadlock problem can be modeled as a constrained combinatorial problem that seeks to find a possible scheduling for the processes through which the system can avoid entering a deadlock state. To solve deadlock problem, several algorithms and techniques have been introduced, but the use of metaheuristics is one of the powerful methods to solve it. Genetic algorithms have been effective in solving many optimization issues, including deadlock Problem. In this paper, an improved parallel framework of the genetic algorithm is introduced and adapted effectively and efficiently to deadlock problem. The proposed modified method is implemented in java and tested on a specific dataset. The experiment shows that proposed approach can produce optimal solutions in terms of burst time and the number of feasible solutions in each advanced generation. Further, the proposed approach enables all types of crossovers to work with high performance.

Generic Scheduling Method for Distributed Parallel Systems (분산병렬 시스템에서 유전자 알고리즘을 이용한 스케쥴링 방법)

  • Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.27-32
    • /
    • 2003
  • This paper presents the Genetic Algorithm based Task Scheduling (GATS) method for the scheduling of programs with diverse embedded parallelism types in Distributed Parallel Systems, which consist of a set of loosely coupled parallel and vector machines connected via high speed networks The distributed parallel processing tries to solve computationally intensive problems that have several types of parallelism, on a suite of high performance and parallel machines in a manner that best utilizes the capabilities of each machine. When scheduling in distributed parallel systems, the matching of the parallelism characteristics between tasks and parallel machines rather than load balancing should be carefully handled with the minimization of communication cost in order to obtain more speedup. This paper proposes the based initialization methods for an initial population and the knowledge-based mutation methods to accommodate the parallelism type matching in genetic algorithms.

Vehicle Routing Problem Using Parallel Genetic Algorithm (병렬 유전자 알고리즘을 이용한 차량경로문제에 관한 연구)

  • Yoo, Yoong-Seok;Ro, In-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.490-499
    • /
    • 1999
  • Vehicle routing problem(VRP) is known to be NP-hard problem, and good heuristic algorithm needs to be developed. To develop a heuristic algorithm for the VRP, this study suggests a parallel genetic algorithm(PGA), which determines each vehicle route in order to minimize the transportation costs. The PGA developed in this study uses two dimensional array chromosomes, which rows represent each vehicle route. The PGA uses new genetic operators. New mutation operator is composed of internal and external operators. internal mutation swaps customer locations within a vehicle routing, and external mutation swaps customer locations between vehicles. Ten problems were solved using this algorithm and showed good results in a relatively short time.

  • PDF