• Title/Summary/Keyword: Parallel Flow Heat Exchanger

Search Result 77, Processing Time 0.021 seconds

Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet (통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

Optimization of Design Factors for Thermal and Flow Characteristics of a Parallel Flow Heat Exchanger (평행류 열교환기의 열.유동 특성에 대한 설계인자의 최적화)

  • Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.640-651
    • /
    • 2000
  • For the heat and fluid flow analyses of a parallel flow heat exchanger, an improved model considering the effect of flat tube with micro-channels is proposed. The effect of flow distribution on the thermal performance of a heat exchanger is numerically investigated. The flow distribution is examined by varying geometrical parameters, i.e., the position of the separators and the inlet/outlet, and the aspect ratio of micro-channels of the heat exchanger. The flow nonuniformities along the paths of the heat exchanger are proposed and observed to evaluate the thermal performance of the heat exchanger. The optimization using ALM method has been accomplished by minimizing the flow nonuniformity. It is found that the heat transfer rate of the optimized model is increased by 6.0% of that of the reference heat exchanger model, and the pressure drop by 0.4%

Thermal and flow analysis for the optimization of a parallel flow heat exchanger (평행류 열교환기의 열.유동 해석 및 최적화)

  • Lee, Gwan-Su;Jeong, Ji-Wan;Yu, Jae-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.229-239
    • /
    • 1998
  • The present paper examines the thermal and flow characteristics of a parallel flow heat exchanger and investigates the effects of the parameters on thermal performance by defining the flow nonuniformity. Thermal performance of a parallel flow heat exchanger is maximized by the optimization using Newton's searching method. The flow nonuniformity is chosen as an object function. The parameters such as the locations of separator, inlet, and outlet are expected to have a large influence on thermal performance of a parallel flow heat exchanger. The effect of these parameters are quantified by flow nonuniformity. The results show that the optimal locations of inlet and outlet are 19.73 mm and 10.9 mm, respectively. It is also shown that the heat transfer increases by 7.6% and the pressure drop decreases by 4.7%, compared to the reference model.

A Numerical Study of Flow Distribution Effect on a Parallel Flpw Heat Exchanger

  • Jeong, Gil-Won;Lee, Gwan-Su;Cha, Dong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1563-1571
    • /
    • 2001
  • The effect of flow distribution on thermal and flow performance of a parallel flow heat exchanger has been numerically investigated. The flow distribution has been altered by varying the geometrica l parameters that included the locations of the separators, and the inlet/outlet of the heat exchanger. Flow nonuniformities along paths of the heat exchanger, which were believed to be dominantly influential to the thermal performance, have been observed to eventually optimize the design of the heat exchanger. The optimization has been accomplished by minimizing the flow nonuniformity that served as an object function when the Newton's searching method was applied. It was found that the heat transfer of the optimized model increased approximately 7.6%, and the pressure drop decreased 4.7%, compared to those of the base model of the heat exchanger.

  • PDF

Slim Air-Conditioner with Parallel Flow Heat Exchangers for Cooling of Telecommunication Cabinet (평행류 열교환기가 적용된 무선통신 중계기 냉각용 슬림형 공조기)

  • Cho, J.P.;Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2009
  • Slim telecommunication cabinet cooler, equipped with parallel flow heat exchangers and operating with R-22, is developed. The performance is compared with imported one, equipped with fin-tube heat exchangers and operating with R-134a. Test results show that the newly-developed cooler increases the cooling capacity by 6% and EER by 33%. The refrigerant charge for the developed cooler is 500g compared with 1250g for the imported one. The adoption of parallel flow heat exchanger appears to have reduced the refrigerant charge. In addition, it is shown that the reduced air flow rates through parallel heat exchangers as compared with those through fin-tube heat exchangers are beneficial to the reduction of the equipment noise.

Heat and Flow Analysis of a Parallel Flow Heat Exchanger Using Porous Modeling (다공성 모델링을 이용한 평행류 열교환기의 열.유동 해석)

  • Jeong, Gil-Wan;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1784-1792
    • /
    • 2001
  • Numerical analysis on a parallel flow heat exchanger(PFHE) is performed using 2 dimensional turbulent porous modeling. This modeling can consider three-dimensional configuration of passage (flat tube with micro-channels), and the stability and accuracy of numerical results are improved. The geometrical parameters(e.g., the position of separators, inlet/outlet, and porosity of passages of a PFHE) are varied in order to examine the flow and thermal characteristics and flow distribution of the single phase multiple passages system. The flow non-uniformities along the paths of the PFHE are observed to evaluate the thermal performance of the heat exchanger. The location of inlet affects the heat transfer, and the location of outlet affects the pressure drop. The porosity with the optimum thermal performance is around 0.53.

Optimal Design Variables of a Parallel-Flow Heat Exchanger by Using a Desirability Function Approach (만족도 함수를 이용한 평행류 열교환기 설계인자 최적화)

  • Oh Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.587-595
    • /
    • 2005
  • The heat and flow characteristics in a parallel-flow heat exchanger were examined numerically to obtain its optimal design variables. A desirability function approach was introduced to optimize its performance with respect to the design parameters over the design domain. By varying the importance of heat transfer and pressure drop which are out put variables, the optimal values of the design parameters are examined. As a result, the us-age of the desirability function is very effective for the optimization of the design variables in a heat exchanger since the changes of optimal values are physically appropriate by varying the importance of each output variable.

Thermal and Flow Analysis inside the Header of a Parallel Flow Heat Exchanger (평행류 열교환기의 헤더내 열유동 해석)

  • 이관수;오석진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.802-809
    • /
    • 2000
  • This study numerically analyzes the thermal and flow characteristics inside the header in PFHE(parallel-flow heat exchanger) by employing a three-dimensional turbulence modeling. The following quantities are examined by varying the injection angle of the working fluid, the location of entrance and the shape of entrance: flow nonuniformity, heat transfer rate, and flow distribution in each passage. The result shows that the degree of significance among the parameters affecting the header part is in the order of the injection angle, the shape of entrance, and the location of entrance. The result also indicates that heat transfer rates compared to the reference model are increased by about 152% for the angle of injection of -$20^{\circ}C$, by about 127% for the shape of entrance with right and left long rectangular form, and by about 108% for the location of entrance located at the lowest Position.

  • PDF

Heat and Mass Transfer of Parallel Plate Heat Exchanger under Frosting Condition (착상조건하에서 평행 평판 열교환기의 열 및 물질전달)

  • Lee, K.S.;Lee, T.H.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 1994
  • In this study, the following factors are investigated from experiments for a vertical parallel plate heat exchanger under the frosting condition ; the growth of frost layer, the characteristics of heat and mass transfer, the change of mass flow rate of the air passing through the heat exchanger, and the pressure drop of the air in the heat exchanger. The amount of heat and mass flux of water vapor transferred from the air stream to the heat exchanger surface is large at the early stage of frosting and then decreases dramatically, and the extent of decreasing rate becomes moderate with time. The frost layer formed near the inlet of the heat exchanger is thicker and denser than that formed near the outlet. It is found that the gradient of the amount of frost along the flow direction increases with time. In the early period of frost formation, the thermal resistance between the air and the cooling plate increases dramatically and then the extent of change decreases with time. Initially the convective thermal resistance is dominant. Then, while the convective thermal resistance decreases with time, the conductive thermal resistance continues to increase with time and finally the conductive thermal resistance becomes dominant.

  • PDF

Optimal Shape of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 형상 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.296-303
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to approximately predict its performance with respect to the design parameters over the design domain. The inflow/outflow angle of the working fluid, the location of inlet/outlet, the protruding height of flat tube and the height of header were chosen as a design parameter The evaluation of the relative importance of the design parameters was performed based on a sensitivity analysis. An efficiency index was used as an evaluation characteristics value to simultaneously consider both the heat transfer and the pressure drop. The efficiency index of the optimum model, compared to that of the base model, was increased by 9.3%.