• Title/Summary/Keyword: Parallel/Distributed Computing Environment

Search Result 62, Processing Time 0.024 seconds

A Reconfigurable Load and Performance Balancing Scheme for Parallel Loops in a Clustered Computing Environment (클러스터 컴퓨팅 환경에서 병렬루프 처리를 위한 재구성 가능한 부하 및 성능 균형 방법)

  • 김태형
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.49-56
    • /
    • 2004
  • Load imbalance is a serious impediment to achieving good performance in parallel processing. Global load balancing schemes cannot adequately manage to balance parallel tasks generated from a single application. Dynamic loop scheduling methods are known to be useful in balancing parallel loops on shared-memory multiprocessor machines. However, their centralized nature causes a bottleneck for the relatively small number of processors in a network of workstations because of order-of-magniture differences in communication overheads. Moreover, improvements of basis loops scheduling methods have not effectively dealt with irregularly distributed workloads in parallel loops, which commonly occur in applications for a network of workstation. In this paper, we present a new reconfigurable and decentralized balancing method for parallel loops on a network of workstations. Since our method supplements performance balancing with those tranditional load balancing methods, it minimizes the overall execution time.

An Adaptive Workflow Scheduling Scheme Based on an Estimated Data Processing Rate for Next Generation Sequencing in Cloud Computing

  • Kim, Byungsang;Youn, Chan-Hyun;Park, Yong-Sung;Lee, Yonggyu;Choi, Wan
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.555-566
    • /
    • 2012
  • The cloud environment makes it possible to analyze large data sets in a scalable computing infrastructure. In the bioinformatics field, the applications are composed of the complex workflow tasks, which require huge data storage as well as a computing-intensive parallel workload. Many approaches have been introduced in distributed solutions. However, they focus on static resource provisioning with a batch-processing scheme in a local computing farm and data storage. In the case of a large-scale workflow system, it is inevitable and valuable to outsource the entire or a part of their tasks to public clouds for reducing resource costs. The problems, however, occurred at the transfer time for huge dataset as well as there being an unbalanced completion time of different problem sizes. In this paper, we propose an adaptive resource-provisioning scheme that includes run-time data distribution and collection services for hiding the data transfer time. The proposed adaptive resource-provisioning scheme optimizes the allocation ratio of computing elements to the different datasets in order to minimize the total makespan under resource constraints. We conducted the experiments with a well-known sequence alignment algorithm and the results showed that the proposed scheme is efficient for the cloud environment.

Efficient Parallel Visualization of Large-scale Finite Element Analysis Data in Distributed Parallel Computing Environment (분산 병렬 계산환경에 적합한 초대형 유한요소 해석 결과의 효율적 병렬 가시화)

  • Kim, Chang-Sik;Song, You-Me;Kim, Ki-Ook;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.38-45
    • /
    • 2004
  • In this paper, a parallel visualization algorithm is proposed for efficient visualization of the massive data generated from large-scale parallel finite element analysis through investigating the characteristics of parallel rendering methods. The proposed parallel visualization algorithm is designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis by using the sort-last-sparse approach. In the proposed algorithm, the binary tree communication pattern is utilized to reduce the network communication time in image composition routine. Several benchmarking tests are carried out by using the developed in-house software, and the performance of the proposed algorithm is investigated.

Implementation and Performance Analysis of Hadoop MapReduce over Lustre Filesystem (러스터 파일 시스템 기반 하둡 맵리듀스 실행 환경 구현 및 성능 분석)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Huh, Taesang;Hwang, Soonwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.561-566
    • /
    • 2015
  • Hadoop is becoming widely adopted in scientific and commercial areas as an open-source distributed data processing framework. Recently, for real-time processing and analysis of data, an attempt to apply high-performance computing technologies to Hadoop is being made. In this paper, we have expanded the Hadoop Filesystem library to support Lustre, which is a popular high-performance parallel distributed filesystem, and implemented the Hadoop MapReduce execution environment over the Lustre filesystem. We analysed Hadoop MapReduce over Lustre by using Hadoop standard benchmark tools. We found that Hadoop MapReduce over Lustre execution has a performance 2-13 times better than a typical Hadoop MapReduce execution.

Web Service Connection Management Scheme for Seamless Migration of User Workspace in Cloud Computing (클라우드 컴퓨팅에서 사용자 작업환경의 끊김 없는 연계를 위한 웹 서비스 연결 관리 기법)

  • Choi, Min
    • Journal of Information Technology Services
    • /
    • v.8 no.1
    • /
    • pp.193-202
    • /
    • 2009
  • Cloud computing emerges as a new computing paradigm which targets reliable and customizable services. The term builds on decades of research in virtual machine, distributed and parallel computing, utility computing, and more recently networking, web service, and software as a service. In this paper, we provide a seamless connection migration of web services. This is useful for cloud computing environment in which many client terminals have mobility. With the wireless internet facility, those mobile users can move place to place during internet communication. Therefore, we provide solutions to the two major problems in current virtualization based migration: communication failure problems and connection re-establishment. Communication channel flushing by zero window notification helps to resolve the communication failure problems and TCP port inheritance prevents connection re-establishment errors during socket reconstruction. Thus, our web service migration facility is now able to preserve open network connections, and even for server sockets. This is a highly transparent approach, in that we did not Introduce additional messages for channel flushing and did not make any modification to the TCP protocol stack. Experimental results show that the overhead due to connection migration of web services is almost negligible when compared with time to take the conventional web service migration.

Distributed Structural Analysis Algorithms for Large-Scale Structures based on PCG Algorithms (대형구조물의 분산구조해석을 위한 PCG 알고리즘)

  • 권윤한;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.385-396
    • /
    • 1999
  • In the process of structural design for large-scale structures with several thousands of degrees of freedom, a plethora of structural calculations with large amount of data storage are required to obtain the forces and displacements of the members. However, current computational environment with single microprocessor such as a personal computer or a workstation is not capable of generating a high-level of efficiency in structural analysis and design process for large-scale structures. In this paper, a high-performance parallel computing system interconnected by a network of personal computers is proposed for an efficient structural analysis. Two distributed structural analysis algorithms are developed in the form of distributed or parallel preconditioned conjugate gradient (DPCG) method. To enhance the performance of the developed distributed structural analysis algorithms, the number of communications and the size of data to be communicated are minimized. These algorithms are applied to the structural analyses of three large space structures as well as a 144-story tube-in-tube framed structure.

  • PDF

A Hadoop-based Multimedia Transcoding System for Processing Social Media in the PaaS Platform of SMCCSE

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku;Jeong, Changsung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2827-2848
    • /
    • 2012
  • Previously, we described a social media cloud computing service environment (SMCCSE). This SMCCSE supports the development of social networking services (SNSs) that include audio, image, and video formats. A social media cloud computing PaaS platform, a core component in a SMCCSE, processes large amounts of social media in a parallel and distributed manner for supporting a reliable SNS. Here, we propose a Hadoop-based multimedia system for image and video transcoding processing, necessary functions of our PaaS platform. Our system consists of two modules, including an image transcoding module and a video transcoding module. We also design and implement the system by using a MapReduce framework running on a Hadoop Distributed File System (HDFS) and the media processing libraries Xuggler and JAI. In this way, our system exponentially reduces the encoding time for transcoding large amounts of image and video files into specific formats depending on user-requested options (such as resolution, bit rate, and frame rate). In order to evaluate system performance, we measure the total image and video transcoding time for image and video data sets, respectively, under various experimental conditions. In addition, we compare the video transcoding performance of our cloud-based approach with that of the traditional frame-level parallel processing-based approach. Based on experiments performed on a 28-node cluster, the proposed Hadoop-based multimedia transcoding system delivers excellent speed and quality.

Decombined Distributed Parallel VQ Codebook Generation Based on MapReduce (맵리듀스를 사용한 디컴바인드 분산 VQ 코드북 생성 방법)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.365-371
    • /
    • 2014
  • In the era of big data, algorithms for the existing IT environment cannot accept on a distributed architecture such as hadoop. Thus, new distributed algorithms which apply a distributed framework such as MapReduce are needed. Lloyd's algorithm commonly used for vector quantization is developed using MapReduce recently. In this paper, we proposed a decombined distributed VQ codebook generation algorithm based on a distributed VQ codebook generation algorithm using MapReduce to get a result more fast. The result of applying the proposed algorithm to big data showed higher performance than the conventional method.

A Grid Service based on OGSA for Process Fault Detection (프로세스 결함 검출을 위한 OGSA 기반 그리드 서비스의 설계 및 구현)

  • Kang, Yun-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.314-317
    • /
    • 2004
  • With the advance of network and software infrastructure, Grid-computing technology on a cluster of heterogeneous computing resources becomes pervasive. Grid computing is required a coordinated use of an assembly of distributed computers, which are linked by WAN. As the number of grid system components increases, the probability of failure in the grid computing is higher than that in a traditional parallel computing. To provide the robustness of grid applications, fault detection is critical and is essential elements in design and implementation. In this paper, a OGSA based process fault-detection services presented to provide high reliability under low network traffic environment.

  • PDF

A Point-based Scheduling Algorithm for GRID Environment (그리드 시스템을 위한 포인트 기반 스케줄링 알고리즘)

  • Oh Young-Eun;Kim Jin Suk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.639-645
    • /
    • 2005
  • GRID environments have been developed in distributed heterogeneous computing infrastructure for advanced science and engineering Therefore efficient scheduling algorithms for allocating user job to resources in the GRID environment are required. Many scheduling algorithms have been proposed, but these algorithms are not suitable for the GRID environment. That is the previous scheduling algorithm does not consider network bandwidth between multiple resources. In this paper, we propose a new scheduling algorithm for Global GRID environment and show that our algorithm has better performance than other scheduling algorithms through extensive simulation.