• Title/Summary/Keyword: Parabolic dish concentrator

Search Result 13, Processing Time 0.017 seconds

An Experimental Study on the Thermal Characteristics of Hybrid Solar Receiver for Dish/Stirling System (Dish/Stirling 시스템 적용을 위한 Hybrid 태양열 흡수기의 열특성에 관한 실험 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Kim, Nack-Joo;Yoo, Seong-Yeon;Kim, Jin-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.7-13
    • /
    • 2007
  • A Dish type solar concentrating system consists of a parabolic concentrator and a cavity receiver. In order to achieve high temperatures from solar energy, it is essential to efficiently reflect the solar rays in the concentrator and to minimize thermal losses in the cavity receiver. Improving the economical efficiency of a solar power system required the stirling unit to be operated continuously. For continuous operation of the stilting unit, the receiver must be continuously provided with thermal energy from solar as well as additional combustion heat. It is possible for a hybrid solar receiver system equipped with an additional combustion to be operated 24 hrs/day. A hybrid solar receiver was designed and manufactured for a total thermal load of 35 kW in the operating temperature range $700^{\circ}C$ to $800^{\circ}C$. The hybrid receiver system was tested in gas-only mode by gas-fired heat to investigate thermal characteristics at inclination angle varying from 0 deg to 30 deg(cavity facing down) and the aperture to cavity diameter ratios of 0(closed cavity) and 1.0(open cavity). This paper has been conducted to measure temperature distribution in cavity surface and to analyze thermal resistances, and the evaporation and condensation heat transfer coefficient in all cases(open and closed cavity).

Estimation of Heat Losses From the Receivers for Solar Energy Collecting System of Korea Institute of Energy Research

  • Ryu, Siyoul;Seo, Taebeom
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1403-1411
    • /
    • 2000
  • Heat losses from the receivers for a dish-type solar energy collecting system constructed at Korea Institute of Energy Research are analyzed. The Stine and McDonald's model is used to estimate the convection loss. The Net Radiation method and the Monte-Carlo method are used to calculate the radiation heat transfer rate from the inside surface of the receiver to the surroundings. Two different receivers are suggested here and the performances of the receivers are estimated and compared with each other based on the prediction of the amount of heat losses from the receivers. The effects of the receiver shape and the radiation properties of the surface on the thermal performance are investigated. The performance of Receiver I is better than that of Receiver II, and the amount of solar irradiation that is not captured by the captured by the receiver after being reflected by the concentrator becomes significant if the temperature of the working fluid is low.

  • PDF

Development of a Solar Tracker using LabVIEW for the enhancement of Solar Energy Utilization (LabVIEW 적용 태양추적장치 개발과 태양에너지이용의 활성화)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Kuan, Chen;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.98-107
    • /
    • 2010
  • This paper introduces step by step procedures for the design, fabrication and operation of a solar tracking system. The system presented in this study consists of motion controllers, motor drives, step-motors, feedback devices and other accessories to support its functional stability. CdS sensors are used to constantly generate feedback signals to the controller, which assures a high-precision solar tracking even under adverse conditions. It enables instant correction if the system goes off track by strong winds causing gear backlash. A parabolic dish concentrator is mounted on the tracking system whose diameter was 30cm. The solar position data, in terms of azimuth and elevation, sunrise and sunset times were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.