• Title/Summary/Keyword: Papermill sludge

Search Result 12, Processing Time 0.02 seconds

Biological Treatment of Phenolic Industrial Wastewater by a Mixed Culture Immobilized on Ceramic Beads (세라믹담체를 이용한 페놀계 산업폐수의 생물학적 처리)

  • Oh, Hee-Mock;Ku, Young-Hwan;Ahn, Kuk-Hyun;Jang, Kam-Yong;Kho, Yung-Hee;Kwon, Gi-Seok;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.755-762
    • /
    • 1995
  • A phenolic resin industrial wastewater containing about 41,000 mg/l of phenol and 2,800 mg/l of formaldehyde was biologically treated by a mixed culture GE2 immobilized on ceramic beads. This study was carried out with three experimental groups : Control-only added the sludge of papermill wastewater ; GE2 treatment-added GE2 to Control ; Ceramic treatment-applied ceramic carrier to GE2 treatment. When the original wastewater was diluted 80 times with aerated tap-water, influent COD$_{Mn}$ WaS 1,140 mg/l and that of the effluent was in the range of 22-35 mg/l, which was not much different among the experimental groups. However, at 20-times dilution, influent COD$_{Mn}$ was 4,800 mg/l and the effluent COD$_{Mn}$ of Control, GE2 treatment and Ceramic treatment was 179, 128 and 94 mg/l, respectively. COD$_{Mn}$, removal efficiency by Ceramic treatment was the highest, at 98.0%. At this time, the effluent phenol concentration of Control, GE2 treatment and Ceramic treatment was 10.71, 7.93 and 5.60, respectively. As the dilution times decreased, the removal efficiency of COD$_{Mn}$ and phenol did not change much, but COD$_{Mn}$ and phenol concentration of the effluent increased. Consequently, it is likely that the phenolic industrial wastewater containing phenol and formaldehyde can be biologically treated using a GE2 and ceramic carrier and that at 40-times dilution, the effluent completely meets the effluent standards for industrial wastewater treatment plant.

  • PDF

The Study of Solid Waste Compost Development for Reclaiming Damage Soil in Forest (산림훼손토양 복원을 위한 부숙토 개발 연구)

  • Na, Seung-Ju;Chang, Ki-Woon;Yang, Hui-Young;Jeon, Han-Ki;Lee, Jong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • To study the development of solid waste compost to use sewage sludge and paper mill sludge for reclaiming damage soil in forest, the changes of temperature, moisture, chemical properties, heavy metals and harmful compound during the aerobic decomposition were investigated, and the compost decomposition of final products investigated the round paper chromatography method and G.I(Germination index) value. The results were summarized as follows. Temperature was changed a little during early 5days because of air temperature too low. That was rapidly increased to over $50^{\circ}C$ at 4days after first turning and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 15days after aerobic decomposition in A and C treatments. The second turning was conducted at 18 days after aerobic decomposition, and then the temperature was little changed. At the compare first with terminal product, The moisture content was decreased all treatments but the change was little in A and B treatments. pH was decreased to below 1 in all treatments. EC was increased to below 5dS/m. The content of total carbon, C/N ratio, $NH_4{^+}-N$ were decreased with 4~7%, below 8 and below 500mg/kg in all treatments, respectively. The content of total nitrogen, $NO_3{^-}-N$, CEC were increased with below 0.5%, below 173mg/kg and over $30cmol^+/kg$ in all treatments, respectively. The content of heavy metals and harmful compound were similar during aerobic decomposition and suited to standard of 가 grade in all treatments. The result of round paper chromatography method and G.I. value, The C treatment concluded well aerobic decomposition. Especially, the G.I. value in C treatment was 64.1 and 66.2 at cabbage and grass, respectively.

  • PDF