• Title/Summary/Keyword: Paper ash

Search Result 687, Processing Time 0.029 seconds

Co-incineration Characteristics of Sewage Sludge and Industrial Waste Using the Rotary Kiln Incinerator (로타리킬른 소각로를 이용한 하수슬러지와 사업장폐기물의 혼합소각 특성)

  • Yang, Dong-Jib;Ko, Jae-Cheol;Kim, Jeong-Keun;Park, Hui-Jae;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • This research were performed to evaluate co-incineration characteristics of sewage sludge and industrial waste in rotary kiln incinerator, and provide the fundamental data. Plastic portion (42.55%) in this industrial waste showed over 3 times higher than that (11.92%) of paper. Korean proximate analysis of the waste mixed with sewage sludge and industrial waste (3 : 7, volumetric basis) showed 16.3% of moisture, 70.5% of volatile solids, and 13.2% of ash, respectively. Low heating value of the mixed waste was 4,513kcal/kg. So it was thought that the mixed waste of sewage sludge and industrial waste (containing 43% of plastics and 12% papers) has enough heating value for co-incineration. The incineration of mixed waste showed the lowest SOx and NOx concentrations at $700^{\circ}C$. However, the operation at $950^{\circ}C$ was feasible in considering dioxin and the other hazardous gases. It was concluded that use of $Ca(OH)_2$ should be under investigation for the operation at $950^{\circ}C$.

  • PDF

Studies on the Nutritonal Components of Mushroom(Sarcodon aspratus) (능이버섯의 영양성분에 관한 연구)

  • 이숙희;김남우;신승렬
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • This paper was performed to analyze the nutritional components for the basic of studies to estimate the nutritional and functional valuation of mushroom(Sarcodon aspratus) The contents of moisture, ash, crude protein, crude fat and carbohydrate in mushroom were 89.93, 1.18, 3.67. 0.96 and 4.26%, respectively. The major free sugar were glucose, sucrose, trehalose, xylose, and cantained more trehalose than other sugars. The total content of amino acids was 796.85mg/100g-fr.wt. And the contents of essential and non-essential amino acid of hydrolyzed amino acid was 300.77 and 486.08mg/100g-fr.wt, respectively. Mushroom contained mush valine, leucine, threonine, Iysine, alanine, glycine, aspartic acid, and glutamic acid. The contents of essential and non-essential amino acid of free amino acid was 124.95, 138.52mg/100g-fr.wt., respectively. and were cantained mush methionine, Iysine, valine arginine, Aspartic arid, and tyrosine. The content of Amino acid derivatives 46.81 mg/100g-fr.wt., and were contained mush mornithine, sarcosine, ${\beta}$-alanine, and phosphoserine. The content of vitamin C was 5.43 mg/100g-fr.wt. The contents of sodium and potassium were 375.73, 61.82mg/100g, respectively.

Status of Ready-Mixed Concrete Plants and Raw Materials in Pusan (부산지역 레미콘 플랜트 및 원재료 현황)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Lee, Yang-Soo;Moon, Hyung-Jae;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.641-644
    • /
    • 2008
  • This paper investigated the plant and raw material of the ready-mixed concrete company which could supply to the second Lotte World on Pusan. the results were summarized as following. Almost plants were mainly using Twin shaft mixer which was 210m$^3$/hr and horizontal type. There was different the number of admixture silos at each plants, and they were separated by types. The mixtures mainly consisted of the ordinary portland cement, fly ash and blast furnace slag. For favorable quality control, each materials had to carry from same factories, and the monitering standard for quality control should be prepared. The coarse aggregates were used with many different producing districts, so they were only used from Y caused by exclusion of quality difference. The crushed, washed and river sands were generally used as fine aggregates, so the fine aggregates which could be possible to supply stable quality were chosen. This study used Poly Carbonic Acid Admixture which was developed to satisfy maintenance of performance till 2 hours and 10MPa at 15 hours.

  • PDF

Estimation of Flowability and Strength in Controlled Low Strength Material Using Multiple Regression Analysis (다중회귀분석을 이용한 CLSM의 유동성 및 강도 특성 예측)

  • Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.65-75
    • /
    • 2017
  • Flowability and strength with curing time of controlled low-strength material (CLSM) are required differently according to the construction purpose. In this paper, the flowability and strength were estimated from the mixing ratio of CLSM using multiple regression analysis to design the CLSM. The flow values and strength at 12 hrs and 7days were measured in accordance with the mixing ratio of CLSM which consists of 7 different materials, such as CSA expansive agent, ordinary Portland cement, fly ash, sand, silt, water, and accelerator. The multiple regression was performed with the proportions of each material of CLSM as independent variables and the measured properties as dependent variables using SPSS Statistics 23 which is a statistical analysis program. The regression coefficients were estimated from the first to third order equation models for the materials. From the results, the third order model for the flow values and the first order models for 12hrs and 7days strength are the most appropriate models. This study suggests that the mixing ratio required for constructions may be effectively estimated from the regression models about the characteristics of CLSM, before performing experimental tests.

TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW

  • Hejzlar, Pavel;Petroski, Robert;Cheatham, Jesse;Touran, Nick;Cohen, Michael;Truong, Bao;Latta, Ryan;Werner, Mark;Burke, Tom;Tandy, Jay;Garrett, Mike;Johnson, Brian;Ellis, Tyler;Mcwhirter, Jon;Odedra, Ash;Schweiger, Pat;Adkisson, Doug;Gilleland, John
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.731-744
    • /
    • 2013
  • Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR) which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ~30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1) no reprocessing plants need to be built, 2) a reduced number of enrichment plants need to be built, 3) reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4) less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste burden. This paper describes the origins and current status of the TWR development program at TerraPower, LLC. Some of the areas covered include the key TWR design challenges and brief descriptions of TWR-Prototype (TWR-P) reactor. Selected information on the TWR-P core designs are also provided in the areas of neutronic, thermal hydraulic and fuel performance. The TWR-P plant design is also described in such areas as; system design descriptions, mechanical design, and safety performance.

The Effect of Black Stem on the Quality of Expended Stem and Cigarette (Black Stem이 팽화주맥 및 제품담배의 품질에 미치는 영향)

  • Yang, Jin-Chul;Kim, Dae-Young;No, Jae-Seong;Han, Jung-Ho;Chung, Han-Ju;Kim, Yong-Ha;Kim, Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • This study was carried out to investigate the influence of stem materials such as black stem on the quality of expended stem and cigarettes. Normal and black stem were separated by tobacco scan and then, those stems were expanded after treating with their respective stem casings. Total sugar, ether extract, ash contents and pH were slightly low in black stem compared with normal stem. However, the number of bacteria and fungi ratio were remarkably higher in black stem than that of normal stem. As compared with normal stems, ratio of rushed stem in rolled process was approximately 2 times higher in black stem with the consequency that the filling capacity of black stem was decreased. The ratio of large particles (> 3.35 mm) of expanded black stem showed decreasing tendency and small particles rate (1.40 mm <) was increased compared with normal stem. When expanded stems were prepared using stem containing 5 levels (0, 10, 20, 30 and 100 %) of black stem, the filling capacity was decreased and static burning rate was significantly decreased with increasing expanded black stem rate. However, the weight and hardness of cigarettes were slightly increased with increasing expanded black stem rate. The contents of phenol compounds, aromatic amines and carbonyl compounds in the cigarette mainstream smoke from the cigarette which was manufactured with various ratio of expended black stem, were gradually increased with increasing expanded black stem rates. Also, the cytotoxicity and the mutagenicity of the TPM were significantly increased with increasing expanded black stem rate. The sensory test result showed that cigarettes blended with 10 and 30 % level of black stem rate was exhibited significantly high sensory attributions such as off-taste, impact, hotness, bitterness and irritation as compared with cigarette blended with normal stem, while smoke fullness and cleanness were slightly decreased with increasing expanded black stem rates. The number of brown spots on cigarettes paper was 2 to 3 times high in cigarettes containing black stem than that of cigarette made from normal stem and were high with increasing black stem rate. The overall assessment in this study suggest, that black stem should not be used because of bad quality of expanded stem and high toxicological activity of cigarette mainstream smoke.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

Characteristics of Shear Waves in Controlled Low Strength Material with Curing Time (양생시간에 따른 유동성 채움재의 전단파 특성)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The ultrasonic waves for monitoring concrete materials have been used to investigate the setting and hardening process of concrete. This paper presents the application of bender elements for monitoring the hardening properties of Controlled Low Strength Material (CLSM) and the characterization of shear waves in CLSM according to curing time. To ensure the early age properties and flow, the CLSM consists of CSA cement, sand, silt, water, fly ash, and accelerator. In addition, three different type specimens according to fine contents are mixed. A couple of bender elements are installed at the wall of measurement cell and the CLSM specimen are prepared at the measurement cell for 28 days. Experimental results show that the resonant frequency and shear wave velocities increase with an increase in the curing time, regardless of the fine contents. Up to ten hours, the amplitudes of shear waves also increase, and the resonant frequency and shear wave velocities at the same time increase as the fine contents increase. The shear wave measurement technique using the bender elements may be effectively used to evaluate the hardening properties of CLSM along the curing time.

Studies on the Preparation of Weanling Food from Soybean (Part 1) -Conditions for the digestion of soybean protein by Eezyme from Aspergillus- (대두를 이용한 이유식 제조에 관한 연구(제 1보) -효소를 이용한 대두단백질 분해 적정 조건결정 및 조제에 관하여-)

  • Kim, Z.U.;Cho, M.J.
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 1970
  • In order to prepare digested Protein source for the Weanling Food from soybean, an attempt was made to decompose steamed soybean protein to amino acids and peptides by protease and cellulase produced from Aspergillus niger and Aspergillus sojae. In this paper, the optimum condition for digestion of soybean protein were studied and also investigated the effects of decolorization of it. As the results, followings were obtained; 1. As steaming conditions, a treatment under 15 lb of pressure and 10 minutes of heating shows most effective. 2. The optimum pH of Asp, sojae enzyme for the digestion of soybean protein is 6.0, while that of Asp. niger enzyme is 4.4. In successievly-decomposing with Asp. sojae and Asp. niger, it shows the most effective on ratio of water-soluble-nitrogen to total nitrogen and amino-nitrogen to total nitrogen than any other separate treatments. 3. The suitable amount of the enzyme solution to that of the soybean substrate paste, in volume, is 1 : 2. 4. Digestion ratio of soybean protein indicates the gradual and steady effects of increasing time of digestion, but 8 hour-digestion regarding to putrefaction was suitable. 5. The most effective decolorization was successively passed on culumns of active carbon and anion exchanger (Dowex 2-x-8) at room temperature. In separate treatments, the effective order of decolorization was as follows; (Dowex 2-x-8)>Active carborn>Amberite IR-120 6. The powder type of the soy protein source obtained by concentration below $60^{\circ}C$ contains 12.51% of moisture, 66.31% of protein, 4.25% of fat, 12.75% of carbohydrate, 4.18% of ash.

  • PDF