• Title/Summary/Keyword: Paper ash

Search Result 687, Processing Time 0.023 seconds

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

CO2 Emission and Storage Evaluation of RC Underground Structure under Carbonation Considering Service Life and Mix Conditions with Fly Ash (탄산화 환경에 노출된 RC 지하구조물의 내구수명과 플라이애쉬 배합 특성을 고려한 탄소 배출 및 흡착 평가)

  • Kim, Seong-Jun;Mun, Jin-Man;Lee, Hack-Soo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.999-1009
    • /
    • 2014
  • In this paper, $CO_2$ emission and storage amount are evaluated for real RC (Reinforced Concrete) underground structure considering $CO_2$ amount including material manufacturing, moving, and construction, repairing timing stage regarding extended service life. Four mix proportions with mineral admixtures are prepared and $CO_2$ diffusion coefficient are obtained based on a micro modeling. Referred to carbonation durability limit state, $CO_2$ emission and storage amount are evaluated, which shows higher initial $CO_2$ emission is caused due to larger unit content of cement and the storage increases with more rapid carbonation velocity. Furthermore various $CO_2$ concentration is adopted for simulation of $CO_2$ evaluation including measured $CO_2$ concentration (600ppm). With higher concentration of $CO_2$ outside, carbonation velocity increases. In order to reduce $CO_2$ emission through entire service life, reducing initial $CO_2$ emission through mineral admixture like fly ash is more effective than increasing $CO_2$ storage through OPC since $CO_2$ is significantly emitted under manufacturing OPC and $CO_2$ storage in cover concrete of RC structure is not effective considering initial concrete amount in construction.

The Physico chemical Characteristic of MSW and sludge in west area of Kangwondo (강원도 영서지역 생활폐기물 및 슬러지의 물리·화학적 특성에 관한 연구)

  • Lee, Geon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.112-120
    • /
    • 2004
  • In this study, the physico chemical characteristic of MSW and sludge in west area of Kangwondo was investigated for database, managing the waste and waste treatment facility. The sampling sites were selected as 6 different MSW generation area and 2 sludge generation area. it is necessary to measure the characteristics of MSW to build the data-base. The year of 2000, 197.4ton/day of MSW which was generated in this area. This MSW was composed of 26.6% food wastes, 24.2% of papers, 22.8% of plastics & vinyls, 9.6% of textiles, 3.80% of wood, 2.8% of rubbers & leathers and others, respectively. Most of MSW are composed of food, paper and plastic waste and combustible waste is more than 89%. The generation of papers and vinyls are almost same for different seasons For 3-components of MSW, moisture is 40.2%, combustible component is 52.1% and ash is 7.7% and for 3-components of sludge, moisture is 83.3%, combustible component is 7.7% and ash is 9%. The chemical element has the high order of carbon(51.6%), oxygen(38.6%), hydrogen(7%) on the dry basis of wastes. And the high heating value of MSW is 4989.4 Kcal/kg sludge is 4428.04 Kcal/kg and low heating value of the MSW which is measured by calorimeter is 2032.88kcal/kg. From the leaching test of wastes, there is no heavy metals.

  • PDF

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water (해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

Properties of Non-Sintered Cement Pastes Immersed in Sea Waters at Different Temperatures for Binders Mixed with Different Ratios (침지된 해수 온도 및 결합재 혼합비에 따른 비소성 시멘트의 강도 특성)

  • Jun, Yubin;Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.75-84
    • /
    • 2016
  • This paper presents an investigation of the mechanical properties on non-sintered cement pastes immersed in sea waters at three different temperatures. The non-sintered cement pastes were synthesized using blended binder(Class F fly ash; FA and ground granulated blast furnace slag; GGBFS) and alkali activator(sodium hydroxide and sodium silicate). Binders were prepared by mixing the FA and GGBFS in different blend weight ratios of 6:4, 7:3 and 8:2. The alkali activators were used 5wt% of blended binder, respectively. Calcium carbonate was used as an chemical additive. The compressive strength, bulk density and absorption of alkali-activated FA-GGBFS blends pastes were measured at 3 and 28 days after immersed in sea waters at three different temperatures($5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$). The XRD and SEM tests of the pastes were conducted at 28 days. Water-soluble chloride(free chloride) and acid-soluble chloride(total chloride) contents in the pastes were also measured after 28 days immersion in sea water. The experimental results showed that increasing the content of FA in alkali-activated FA-GGBFS blends pastes immersed in sea water increases the absorption, water-soluble chloride content and acid-soluble chloride content, and reduces the compressive strength and bulk density. And it was found that there was a variation of strength change for the alkali-activated FA-GGBFS blends pastes immersed in sea waters at three different temperatures that depends on the blending ratio of FA and GGBFS.

STUDIES ON THE VARIATION IN CHEMICAL CONSTITUENTS OF THE SEA MUSSEL, MYTILUS EDULIS (진주담치 Mytilus edulis의 성분에 관한 연구)

  • CHOI Woo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.38-44
    • /
    • 1970
  • This paper deals with the proximate composition of the cultured sea mussel (Mytilus edulis) which are distributed along the whole coastline of Korea, particularly abundant in the southern coast Studies on seasonal variation in chemical constituents of the mussel at Northern Bay of Choongmu were carried out from March to December 1968 and the results obtained are as follows: 1. Moisture content in mussel meat was $78.5\%$ on the average; the maximum amounted to $81.3\%$ during May-June, while the minimum was $77.8\%$ in September. 2. Crude protein was in the range of $10.9-13.7\%$; the maximum was In September-October, the minimum appeared in March, and the average value was $12.8\%$. 3. Lipids on the average was $2.5\%$ and there was no markable difference .between the high and low contents. 4. Total sugar was $5\%$ during September-October in its highest, while there appeared minor contents during winter season. 5. Crude ash on the average was $1.5\%$ the and maximum was in November-December. As for minerals in the ash, $963mg\%$ of phosphate, $82mg\%$ of calcium, and $188mg\%$ of iron were found respectively. 6. pH was in the range of 6.02-6.55, but it generally declined to acidity in the summer season. 7. In amino acid contents, there found 16 kinds; $710mg\%$ of glutamic acid, $696mg\%$ of aspartic acid, $383mg\%$ of Iysine, $225.4mg\%$ of valine, $225.1mg\%$ of proline, etc. 8. The amounts of Protein, lipids and total sugar are tend to increase from August to October, particularly in September.

  • PDF

Pretreatment of Used Newspaper to Increase Enzymatic Digestibility (효소 당화율을 높이기 위해 폐 신문지의 전처리)

  • 문남규;김성배
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.446-451
    • /
    • 2001
  • A pretreatment method to increase enzymatic digestibility for waste paper such as newspaper was investigated. Ash content, substrate size and printed ink were considered to be factors that affect on enzymatic hydrolysis. The effect on enzymatic digestibility of varying these factor were measured. Printed ink had the highest effect of the three factors, so a method was developed to remove the ink during pretreatment. Fist, a pretreatment process using a percolation reactor was tried. The digestibility of the substrate pretreated at 170$\^{C}$, however, was less than that of the untreated substrate because only small portion of ink was removed. Therefore, a batch type process at less than 100$\^{C}$ was devised. Of several schemes, a method using amonia-hydrogen peroxide mixture on a shaking bath proved most effective. The digestibility obtained from this method was about 85%--approximately 20% greater than the untreated substrate. This proves the pretreatment method was very effective in treating waste paper. The high digestibility obtained from this pretreatment is probably due to the effects of the hydrogen peroxide that can enhance ink removal and substrate swelling.

  • PDF

Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Sim, Sung-Woong;Lee, Gyeong-Sun;Cho, In-Jun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.