• Title/Summary/Keyword: Paper ash

Search Result 685, Processing Time 0.026 seconds

Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials (자원순환형 재료를 사용한 변형경화형 시멘트 복합체(SHCC)의 역학적 특성)

  • Kim, Sun-Woo;Cha, Jun-Ho;Kim, Yun-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This paper describes results of an preliminary study to produce strain hardening cement-based composites (SHCCs)with consideration of sustainability for infrastructure applications. The aims of this study are to evaluate the influence of recycled materials on the mechanical characteristics of SHCCs, such as compressive, four-point bending, and direct tensile behaviors, and to give basic data for constitutive model for analyzing and designing infra structures with SHCCs. In this study, silica sand, cement, and PVA fibers, were partially replaced with recycled sand, fly-ash, and FET fibers in the mixture of SHCCs, respectively. Test results indicated that fly-ash could improve both bending and direct tensile performance of SHCCs due to increasing chemical bond strength at the interface between PVA fibers and cement matrices. However, SHCCs replaced with PET fibers showed much lower performance in bending and direct tensile tests due to originally low mechanical properties of own fibers, although compressive behavior is similar to PVA2.0 specimen. Also, it was noted that the recycled sand would increase elastic modulus of SHCCs due to larger grain size compared to silica sand. Based on pre-set target value to maintain the performance of SHCCs, it was concluded that the replacement ratio below 20% of fly-ash or below 50% of recycled sands would be desirable for creating sustainable SHCCs.

Effects of the Compaction and Size of Bottom Ash Aggregate on Thermal Conductivity of Porous Concrete (가압다짐과 바텀애시 골재 크기 특성이 다공성 콘크리트의 열전도도에 미치는 영향)

  • Yang, In-Hwan;Jeong, Seung-Tae;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.195-203
    • /
    • 2022
  • In this paper, the effects of the bottom ash aggregate sizes and compaction levels on the thermal conductivity of porous concrete were investigated. In this experimental study, bottom ash was used as aggregates after identifying the aggregate characteristics. SA mixtures included hybrid aggregates, and DA contained only one particle size. The water-binder ratio was fixed at 0.30, and the compaction levels were applied to the concrete specimens at 0.5, 1.5, and 3.0 MPa. Unit weight, total void ratio, and thermal conductivity were measured and analyzed. As the compaction level increased, the unit weight and thermal conductivity increased in the SA mixtures, but the total void ratio decreased. In addition, the thermal conductivity of the specimens under oven-dried condition were lower than that of the specimens under air-dried condition. The correlation between the unit weight, total porosity, and thermal conductivity of porous concrete was analyzed. The thermal conductivity-unit weight correlation was proportional, while the thermal conductivity-total void ratio correlation was inversely proportional.

A Study on the Correlation between Strength and Compaction of Porous Concrete Using Bottom Ash Aggregate (바텀애시 골재를 사용한 다공성 콘크리트의 강도와 컴펙션의 상관관계 연구)

  • In-Hwan, Yang;Seung-Tae, Jeong;Ji-Hun, Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, the effect of compression levels on the strengths of porous concrete using bottom ash aggregates was analyzed. Coal bottom ash (CBA) was used as aggregate in porous concrete in this study. The aggregate size types used in the CBA concrete mixtures were catagorized into two different ones. One included only a single aggregate particle size and the other included hybrid aggregate particles mixed at a ratio of 8:2 volume proportion. The water-binder ratio was fixed at 0.30, and the compression levels were applied at 0.5, 1.5, and 3.0 MPa valu es to fabricate a porou s concrete specimen. The total porosity, compressive, splitting tensile, and flexural tensile strengths were tested and analyzed. When the compression level increased, the total porosity decreased, meanwhile the compressive, split tensile, and flexural tensile strengths increased. The total porosity of concrete using hybrid aggregate was lower and the strength was larger than those of concrete using single-type aggregate. Finally, the correlation between the total porosity, compressive, split tensile, and flexural tensile strengths of porous concrete were presented. The total porosity and strength characteristics showed an inversely proportional correlation.

New Korean Traditional Papermaking from Morus spp.(I)-Anatomical and Chemical Properties and Pulping Characteristics- (뽕나물 이용한 새로운 한지의 제조(제 1보)-해부학적 , 화학적 성밀 및 펄프화 특성-)

  • 최태호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.96-104
    • /
    • 1999
  • Anatomical and chemical properties of three mulberry species (Morus spp) were analyzed as an alternative row material for the paper mulberry (Broussonetia kazinoki) . The pulping and papermaing characteristics of bast fiber and whole stalks by three different pulping processes, conventional alkali, alkali-hydrogen peroxide, and sulfomethylated, for the Hanji were investigated. The fiber dimension of M.bombycis was the biggest of the species. The fiber length of upper part and the fiber width and cell wall thickness of lower part were bigger than the others. The extractives and ash contents of bast fiber were higher than those of whole stalk , and holocellulose and lignin contents of whole stalk were higher than those of bast fiber. The pulp yields of M.alba bast fiber, M.bombycis whole stalk, and sufomethylated pulping were higher than the others.

  • PDF

Characterization of Nalita Wood (Trema orientalis) as a Source of Fiber for Papermaking (Part I): Anatomical, morphological and chemical properties

  • M. Sarwar Jahan;Mun, Sung-Phil
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • Nalita wood (Trema orientalis), one of the fastest growing woods in the world, is characterized anatomical, morphological and chemical properties at annual growth ring level in order to investigate as papermaking raw material. The proportion of fibers and vessel was increased with an increase of growth ring (from pith to bark). The fiber length of Nalita was increased with increasing growth ring, and an average fiber length was about 817 um. The average basic density of Nalita was about 0.38 g/cc. The total lignin & holocellulose in Nalita were increased and ash & alcohol-benzene extract decreased from pith to bark. These values were about 23.5 - 24.4 %, 78.1 - 80.1 %, 1.04 - 0.92 % and 2.1 - 1.8 %, respectively. The xylan was the predominant sugar in the hemicellulose of Nalita.

Manufacturing of Koren Traditional Handmade Paper with Reduced Fiber Damage (I) -Inorganic Composition of Traditional Lye- (섬유의 손상이 적은 한지 제조 (제1보) -인피섬유 증자시 사용된 전통 잿물의 화학적 조성-)

  • 문성필
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • The inorganic compositions of traditional lye, and lyes prepared from the stalks of five different agricultural products: beans, wheat, barley, buckwheat and red peppers, were analyzed. Traditional lye was composed mainly of a weak alkaline salt, potassium carbonate as the major component and neutral salts, potassium chloride and potassium sulfate as minor components. The ash and lye contents of buckwheat have significantly higher then those of the rest agricultgural products. Bean and red pepper stalks lyes were composed mainly of potassium carbonate, similar to the composition of traditional lye, but also contained potassium chloride or sulfate. In contrast, postassium chloride was the major component of wheat and barley stalk lye.

  • PDF

A Study on the Rate of Ink Penetration of Korean Newspapers (국산 신문용지에서 잉크침투속도 변화에 따른 인쇄적성에 관한 연구)

  • Kim, Jong-Kyoung;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2006
  • Measuring ink penetration is one of the best ways to know paper printability. Ink penetration was effected by physical properties of newspapers. This study was carried out for the purpose of improvement printability with ink penetration of Korean newspapers. The samples were prepared by means of 7 Newspaper manufacture company in Korea, and were tested by IGT printability tester. The results of this experiments showed that the rate of ink penetration, roughness and porosity are proportioned. While, ink penetration, paper formation, ash content and smoothness of paper are in inverse proportioned.

  • PDF

Study of Rice Husk Pulping for utilization of Rice Husk Fiber (왕겨섬유 활용을 위한 왕겨 펄프화 연구)

  • Oh, Min-Taek;Sun, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • The rice husk is one of the major agricultural residue in KOREA. In this paper, the effects of various pulping conditions on the properties of rice husk pulp and handsheets made of rice husk fiber were evaluated in order to utilize the rice husk as an alternative source for wood pulp. Two typical alkali pulping, such as soda pulping and Kraft pulping were applied with various conditions of the pulping processes. The higher effective alkali and higher pulping temperature resulted in the higher efficiency in removal of lignin and ash, which leaded to the higher strength properties of handsheets made of rice husk fiber, but the lower yield of rice husk pulp. The better efficiency in production of rice husk pulp and the stronger handsheets were obtained by the Kraft pulping.

Effects of PCC Loading at Thick Stock on the Paper Properties (고농도 지료에서의 PCC 충전이 종이 물성에 미치는 영향)

  • Won, Jong-Myoung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.62-68
    • /
    • 2012
  • This study was carried out to evaluate the effect of PCC loading at thick stock on the physical properties of paper. The effect of starch addition(2, 4 and 6%) and mixing time(5, 10 and 20 min.) on the filler retention and paper properties were investigated. Optimum dosage of cationic starch as a fixing agent was 4%, and mixing time did not showed any significant effect on the filler retention. PCC loading at thick stock was more effective to improve bulk and opacity than PCC loading at thin stock, although their improvement was not so significant. It was also found that the strength properties could be improved by the loading at thick stock. PCC loading method at thick stock could be considered as one of potential approaches for further improving of paper properties, although further research works are required in order to apply the PCC loading at thick stock in the paper mill.

Exploration of Optimum Retention of Antibacterial Agents in Functional Packaging Paper (항균 포장원지내 항균소재의 최적 정착법 탐색)

  • Kim, Chul-Hwan;Kim, Jae-Ok;Jung, Jun-Ho;Cho, Sung-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.298-305
    • /
    • 2005
  • Antimicrobial packaging paper was prepared with a powder-type botanical antimicrobial agent from grapefruit seed extract (BAAG) and zeolite according to TAPPI standard method. The functional fillers containing BAAG fixed to CaCO$_3$ and zeolite were well retained in the fiber network by a retention aid such as cationic polyacrylamide, which was ascertained by the ash contents of paper and the SEM microphotographs. With addition of the functional fillers to paper, tensile strength and burst strength of the paper decreased by interference of the functional fillers with interfiber bonding but bending stiffness and tear strength increased by improved elastic modulus of paper and delayed transfer of tearing energy. Finally, it was confirmed that the antimicrobial packaging paper might be able to be used to make packaging bags and corrugated containers due to the minor deterioration of strength properties.