• Title/Summary/Keyword: Paper ash

Search Result 687, Processing Time 0.023 seconds

Prediction of compressive strength for HPC mixes containing different blends using ANN

  • Lingam, Allam;Karthikeyan, J.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.621-632
    • /
    • 2014
  • This paper is aimed at adapting Artificial Neural Networks (ANN) to predict the compressive strength of High Performance Concrete (HPC) containing binary and quaternary blends. The investigations were done on 23 HPC mixes, and specimens were cast and tested after 7, 28 and 56 days curing. The obtained experimental datas of 7, 28 and 56 days are trained using ANN which consists of eight input parameters like cement, metakaolin, blast furnace slag and fly ash, fine aggregate, coarse aggregate, superplasticizer and water binder ratio. The corresponding output parameters are 7, 28 and 56 days compressive strengths. The predicted values obtained using ANN show a good correlation between the Experimental data. The performance of the 8-9-3-3 architecture was better than other architectures. It concluded that ANN tool is convenient and time saving for predicting compressive strength at different ages.

Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay;Yadav, Aniket;Shekhar, Shubham;Anand, Abhishek
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.683-688
    • /
    • 2017
  • This paper presents the experimental investigations on the compressive strength and permeation properties of geopolymer concrete prepared with low calcium fly ash as the primary binder activated with different percentage of Alccofine. The durability aspect was investigated by performing permeable voids and water absorption tests since permeability directly influences the durability properties. The test results show that Alccofine significantly improves the compressive strength and reduces the water permeability thus enhances the durability of geopolymer concrete at ambient curing regime which encourages the use of geopolymer concrete at ambient curing condition thus promising its use in general construction also.

Effect of Household Garbage on the SRF Biomass - Based on the B city (가정 폐기물이 SRF 바이오매스에 미치는 영향 - B시를 중심으로)

  • Park, Jae Woo;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • This study investigated the biomass content of fluff type SRF(Solid refuse fuel) operated in B city according to the physical composition. As a result of analyzing the physical composition of SRF, it was investigated that papers 25.2%, fiber 15.1%, vinyl·plastics 42.6%, woods 9.4%, rubbers 1.5%, diapers 3.2% and incombustibles 3.0%. The average of ash and combustible content of SRF was 10.5% and 89.5%, and the higher the proportion of paper and wood, the lower proportion of ash. In addition, the biomass of SRF is 24.9%~58.0%, with an average of 42.6%.

Characterization of Biometry and Chemical and Morphological Properties of Fibers from Bagasse, Corn, Sunflower, Rice, and Rapeseed Residues in Iran

  • Kiaei, Majid;Samariha, Ahmad;Kasmani, Jafar Ebrahimpour
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • The biometry, morphological properties and chemical composition of bagasse, corn, sunflower, rice, and rapeseed residues plants were analyzed. The results revealed differences in biometry properties and chemical composition of the different types of agricultural resides investigated. The greatest proportion of fiber length (1.32 mm) and cellulose (55.56%) was found in residues of bagasse plants, with a low ash (1.78%) and lignin (20.5%). The lignin of all types of agricultural resides was less than hardwood and softwood. In addition, the rice and rapeseed residues plants had highest amount of ash and extractive component. The slenderness and flexibility ratios of the all types of agricultural resides fibers were similar to some of hardwood and softwood species.

Application of PEO/Cofactor System on Papermaking Process for Recycled Fibers (재생 지료 공정에서의 PEO/cofactor 보류 시스템의 적용)

  • Jung, Chul-Hun;Lee, Jin-Ho;Kil, Jung-Ha;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • Ionic trash in furnish decreases retention and drainage performance of the microparticle retention system using recycled fibers in closed papermaking system. Two retention systems, such as the microparticle system and the PEO/cofactor system, were compared and analyzed to improve retention. The PEO/cofactor system achieved similar retention performance at low addition level as the microparticle system. Optimum ratio of PEO/cofactor dual polymer system was 1:10. Ash retention was increased when using the fixing agent. As the TMP ratio increased, the PEO/cofactor system was more efficient in retention and drainage than the other system. The high molecular weight and non-ionic polymer retention system had less effect on flocculation hindrance than the traditional electrostatic retention system.

CMOS 형 이미지 센서와 응용

  • 정차근;양성현;조경록
    • Broadcasting and Media Magazine
    • /
    • v.5 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • This paper presents a survey of the CMOs-based image sensor and its applications to various real field digital camera. CMOS image sensor, called active pixel sensor (APS), has many interesting properties such ash I회 sensitivity, high speed readout, random access and lower power consumption when it is compared with CCd. this paper also addresses the state-of-the-art of CMOS image sensor, and gives some examples of its application to digital camera and special-purpose cameras. with the advancement of semiconductor technology, CMOS image sensor is a future technology for imaging system, and will be widely used in the filed of image capturing for consumer electronics and scientific measurements.

  • PDF

An Experimental Study on the Evaluation of Hydration Heat of Low Heat Concrete (in case of Belite rich Cement) (저발열 콘크리트 수화열 평가의 실험적 연구 (Belite rich 시멘트 중심))

  • 현석훈;박춘근;신영인;김용호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.352-357
    • /
    • 1996
  • In hardening massive concrete, the heat of hydation gives rise to considerable thermal gradientsand thermal stresses, which might cause early age cracking. This paper deals with the results of evaluation of hydration heat of low hear concrete, using Belite rich cement (low heat cement) and compared with OPC, slag added cement and fly ash addedcement. Result of evaluation of hydration are presented in this paper. The concrete made with Belite rich cement gets low temperature of center point and low thermal gradients between surface and center points.

  • PDF

Improvement of Paper Strength using Pretreated Precipitated Calcium Carbonate (PCC) (종이의 강도향상을 위한 경질탄산칼슘(PCC) 전처리에 대한 연구)

  • Kim, Chul-Hwan;Lee, Ji-Young;Gwak, Hye-Joeng;Chung, Ho-Kyung;Back, Kyung-Kil;Lee, Hui-Jin;Kim, Sung-Ho;Kang, Ha-Ryoun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • Increasing ash content of the paper is one of the most effective methods for saving raw materials and steam consumption and improving optical properties and better print quality. However, the increase of filler loading or filler content using a conventional wet end system is limited due to severe loss in strength properties, affecting runnability and product quality. This is because the filler has no ability to make bonding with cellulosic fibers. Therefore, if the technology to give filler the bonding ability is developed, the ash content of the paper can be increased more than ever. This study was carried out to modify PCC by coating its surface with starch contributing to better bonding with fibers. To prepare the modified PCC, cationic starch was selected as a polymer and then pretreatment was done by mixing PCC and cationic starch. Consequently, the pretreated PCC contributed to higher tensile strength, stiffness and opacity than the conventional filler, such as GCC and untreated PCC. However, CIE whiteness and ISO brightness decreased slightly compared to conventional fillers.

Synthesis of modified polyacrylamides and their applications for the retention system of papermaking (변성 폴리아크릴 아미드의 합성 및 제지공정의 보류시스템에 응용)

  • Son, Dong-Jin;Yoon, Ji-Hyun;Choi, Eun-Jeong;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2009.04a
    • /
    • pp.23-28
    • /
    • 2009
  • The purpose of this study was to improve not only wet-end performances but also paper characteristics by the modification of various factors like molecular design and ionic characteristics of polyacrylamides First of all physical characteristics were observed after modify molecular design of the cationic polyacrylamides to linear, branched and cross-linked. In addition it was found analysis method to confirm branch degree of cationic polyacrylamides to combine ionic titration characteristics and spectroscopic behavior, After application of these structure modified polyacrylamides to the multiple retention systems with inorganic microparticles, it was found adjusting of branch degree of polyacrylamides was very important to optimize wet-end improvement. Second, After polymerization of amphoteric polyacrylamide to have both of cationic and anionic functional group in the polymer, we observed not only physical characteristics but also wet-end improvement to apply recycled pulp and found that the improvement of solution stability to prevent hydrolysis and increase of ash retention dramatically to compare traditional cationic polyacrylamide retention aid, Finally, After polymerization of anionic polyacrylamide, we observed not only wet-end improvement but also paper characteristics to apply preflocculation of PCC and it was found the improvements of flocculation efficiency, retention, ash retention, optical properties of the paper and bursting strength to compare traditional preflocculant of cationic polyacrylamide.

  • PDF

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF