• Title/Summary/Keyword: Paper ash

Search Result 687, Processing Time 0.027 seconds

Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives

  • Roychand, R.;De Silva, S.;Law, D.;Setunge, S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.113-124
    • /
    • 2016
  • This paper presents the effect of silica fume and nano silica, used individually and in combination with the set accelerator and/or hydrated lime, on the properties of class F high volume ultra fine fly ash (HV-UFFA) cement composites, replacing 80 % of cement (OPC). Compressive strength test along with thermogravimetric analysis, X-ray diffraction and scanning electron microscopy were undertaken to study the effect of various elements on the physico-chemical behaviour of the blended composites. The results show that silica fume when used in combination with the set accelerator and hydrated lime in HV-UFFA cement mortar, improves its 7 and 28 day strength by 273 and 413 %, respectively, compared to the binary blended cement fly ash mortar. On the contrary, when nano silica is used in combination with set accelerator and hydrated lime in HV-UFFA cement mortar, the disjoining pressure in conjunction with the self-desiccation effect induces high early age micro cracking, resulting in hindering the development of compressive strength. However, when nano silica is used without the additives, it improves the 7 and 28 day strengths of HV-UFFA cement mortar by 918 and 567 %, respectively and the compressive strengths are comparable to that of OPC.

An Experimental Study on the Seawater Resistance of Steel Fiber Reinforced concrete Using Fly Ash (플라이애쉬를 혼입한 강섬유보강콘크리트의 내해수성에 관한 실험적 연구)

  • 박승범;오광진
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.189-197
    • /
    • 1997
  • This paper describes an experimental study on the seawater resistance of steel fiber reinforced concrete. The test methods adopted for this study are divided into long-term immersion test and acceleration test by wetting and drying. Tests were carried out to evaluate the procedures which were measured for nine months about reduction in dynamic modulus, length change and compressive strength. Resistance indicators are the water-cement ratio, the content of steel fiber, the content of fly ash, the immersion water(artificial seawater or freshwater) and the types of curing. The seawater resistance of the appropriate additions of steel fiber and fly ash have apparently increased.

Cementing Efficiency of Fly-ash in Mortar Matrix According to Binder-Water Ratio and Fly-ash Replacement Ratio

  • Cho, Hong-Bum;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.194-202
    • /
    • 2012
  • This paper predicts the cementing efficiency of fly-ash(FA) based on mortar test considering binder-water ratio and FA replacement ratio as experimental variables. The cementing efficiency prediction model proposed by statistical analysis enables us to estimate the value according to the binder-water ratio and FA replacement ratio of matrix. When FA replacement ratio is the same, the lower the binder-water ratio, the higher the estimated cementing efficiency. There are significant differences in the values according to binder-water ratio at FA replacement ratios of 15% or less, but there are almost no differences when FA replacement ratio is more than 15%. As the binder-water ratio increases, the variations in the values according to FA replacement ratio are great at FA replacement ratios of 15% or less. As the FA replacement ratios increase, the values increase for FA replacement ratios of 15% or less, but decrease for more than 15%. The values range from -0.71 to 1.24 at binder-water ratio of 1.67-2.86 and FA replacement ratio of 0-70%. The RMSE of the 28-day compressive strength predicted by modified water-cement ratio is 2.2 MPa. The values can be trusted, as there is good agreement between predicted strength and experimental strength.

Quantitative Evaluation of CO2 Sequestration in Ca-rich Waste Mineral for Accelerated Carbonation (가속탄산화를 통한 Ca-rich Waste Mineral의 정량적인 CO2 고용량 평가)

  • Nam, Seong-Young;Um, Nam-Il;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.64-71
    • /
    • 2014
  • Accelerated carbonation is a technique that can be used as a CCS technology for $CO_2$ sequestration of approximately 5~20% in a stable solid through the precipitation of carbonate. An alkaline inorganic waste material such as ash, slag, and cement paste are generated from incinerators, accelerated carbonation offers the advantage of lower transport and processing costs at the same generation location of waste and $CO_2$. In this study, we evaluated an amount of $CO_2$ sequestration in various types of inorganic alkaline waste processed by means of accelerated carbonation. A quantitative evaluation of $CO_2$ real sequestration based on a TG/DTA analysis, the maximum 118.88 $g/kg_{-waste}$ of $CO_2$ in paper sludge fly ash, the maximum 134.46 $g/kg_{-waste}$ of $CO_2$ in municipal solid waste incinerator bottom ash, the maximum 9.72 $g/kg_{-waste}$ of $CO_2$ in industrial solid waste incinerator fly ash, and the maximum $18.19g/kg_{-waste}$ of $CO_2$ in waste cement paste.

Effect of fly ash and GGBS combination on mechanical and durability properties of GPC

  • Mallikarjuna Rao, Goriparthi;Gunneswara Rao, T.D.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.313-330
    • /
    • 2017
  • Geopolymer is a sustainable concrete, replaces traditional cement concrete using alternative sustainable construction materials as binders and alkaline solution as alkaline activator. This paper presents the strength characteristics of geopolymer concrete (GPC) developed with fly ash and GGBS as binders, combined Sodium silicate ($Na_2SiO_3$) and Sodium Hydroxide (NaOH) solution as alkaline activators. The parameters considered in this research work are proportions of fly ash and GGBS (70-30 and 50-50), curing conditions (Outdoor curing and oven curing at $600^{\circ}C$ for 24 hours), two grades of concrete (GPC20 and GPC50). The mechanical properties such as compressive strength, split tensile strength and flexural strength along with durability characteristics were determined. For studying the durability characteristics of geopolymer concrete 5% $H_2SO_4$ solutions was used and the specimens were immersed up to an exposure period of 56 days. The main parameters considered in this study were Acid Mass Loss Factor (AMLF), Acid Strength Loss Factor (ASLF) and products of degradation. The results conclude that GPC with sufficient strength can be developed even under Outdoor curing using fly ash and GGBS combination i.e., without the need for any heat curing.

Prediction of compressive strength of lightweight mortar exposed to sulfate attack

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the results of experimental research, and artificial intelligence methods focused on determination of compressive strength of lightweight cement mortar with silica fume and fly ash after sulfate attack. The artificial neural network and the support vector machine were selected as artificial intelligence methods. Lightweight cement mortar mixtures containing silica fume and fly ash were prepared in this study. After specimens were cured in $20{\pm}2^{\circ}C$ waters for 28 days, the specimens were cured in different sulfate concentrations (0%, 1% $MgSO_4^{-2}$, 2% $MgSO_4^{-2}$, and 4% $MgSO_4^{-2}$ for 28, 60, 90, 120, 150, 180, 210 and 365 days. At the end of these curing periods, the compressive strengths of lightweight cement mortars were tested. The input variables for the artificial neural network and the support vector machine were selected as the amount of cement, the amount of fly ash, the amount of silica fumes, the amount of aggregates, the sulfate percentage, and the curing time. The compressive strength of the lightweight cement mortar was the output variable. The model results were compared with the experimental results. The best prediction results were obtained from the artificial neural network model with the Powell-Beale conjugate gradient backpropagation training algorithm.

Properties of High Strength Concrete Using Fly Ash and Crushed Sand (플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성)

  • 이봉학;김동호;전인구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.

Physical Properties of Matrix using Biomass Fly Ash an Industrial By-product (산업부산물인 바이오매스 플라이애시를 활용한 경화체의 물리적 특성)

  • Kim, Dae-Yeon;Cho, Eun-Seok;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.21-22
    • /
    • 2019
  • In order to prevent global warming according to fossil fuel use, countries around the world are making efforts through the Kyoto Protocol and the Paris Climate Change Convention. In addition, in order to prepare for high oil prices, researches such as the development of various renewable energy are being conducted. At present, the domestic production rate of energy sources in Korea is low at 18.1%, and power plants using forest biomass are being constructed to meet the domestic situation where 63% of the land is a forest. In 2015, the global production of wood pellets, a raw material for wood-based biomass power generation, was 28 million tons, up 7.7% from 2014, and has increased tenfold over the last decade. This is a result of increased demand for biomass. Korea is also increasing every year. However, biomass fly ash, an industrial by-product generated by biomass energy generation, is now being disposed of entirely, and there is little research to utilize it. Therefore, this paper will use biomass fly ash, an industrial by-product, which is currently being discarded due to a lack of separate treatment methods, as an admixture concept to contribute to solving environmental problems, developing new admixtures, improving quality, and seeking recycling plans.

  • PDF

Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material

  • Sunil, B.M.;Manjunatha, L.S.;Yaragalb, Subhash C.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.671-683
    • /
    • 2017
  • Commonly used concrete in general, consists of cement, fine aggregate, coarse aggregate and water. Natural river sand is the most commonly used material as fine aggregate in concrete. One of the important requirements of concrete is that it should be durable under certain conditions of exposure. The durability of concrete is defined as its ability to resist weathering action, chemical attack or any other process of deterioration. Durable concrete will retain its original form, quality and serviceability when exposed to its environment. Deterioration can occur in various forms such as alkali aggregate expansion, freeze-thaw expansion, salt scaling by de-icing salts, shrinkage, attack on the reinforcement due to carbonation, sulphate attack on exposure to ground water, sea water attack and corrosion caused by salts. Addition of admixtures may control these effects. In this paper, an attempt has been made to replace part of fine aggregate by tailing material and part of cement by fly ash to improve the durability of concrete. The various durability tests performed were chemical attack tests such as sulphate attack, chloride attack and acid attack test and water absorption test. The concrete blend with 35% Tailing Material (TM) in place of river sand and 20% Fly Ash (FA) in place of OPC, has exhibited higher durability characteristics.

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.