• Title/Summary/Keyword: Paper ash

Search Result 685, Processing Time 0.031 seconds

Strength Development and Hardening Mechanism of Alkali Activated Fly Ash Mortar (알카리 활성화에 의한 플라이애쉬 모르타르의 강도 발현 및 경화 메커니즘)

  • Jo, Byung-Wan;Park, Min-Seok;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.449-458
    • /
    • 2006
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the cement. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_2\;and\;Al_2O_3$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^-$ through alkali activators. Alkali activators were used for supplying it with additional $OH^-$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also, according to scanning electron microscopy and X-Ray diffraction, the main reaction product in the alkali activated fly ash mortar is Zeolite of $Na_6-(AlO_2)_6-(SiO_2)_{10}-12H_2O$ type.

CO2 Capture Performance of Dry Sorbents Manufactured by Coal Fly Ash (석탄 화력발전소의 비산재를 이용한 건식 CO2 흡수제 제조 및 특성 연구)

  • Lee, Jae Hee;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.547-553
    • /
    • 2013
  • This paper investigates the effect of coal-fired fly ash on dry $CO_2$ sorbents as the supports and additives. For this purpose, various kinds of dry sorbent were manufactured by mixing fly-ash, the primary $CO_2$ absorption components (NaOH and CaO) and water with their different combination. Thereafter, their $CO_2$ absorption performance and the property were analyzed. As a result, variation of absorption efficiency and temperature as well as $CO_2$ desorption of the sorbents are confirmed, which may be primarily ascribed to fly-ash addition to the sorbents. Particularly, fly-ash effect is strongly measured in the sorbent manufactured by mixing all four components (named WNCF sorbents). Absorption efficiency of WNCF sorbents at $550^{\circ}C$ is 35.6% higher than that of flyash free sorbent and desorption is solely observed in WNCF sorbents. Fly-ash in WNCF sorbents leads to increase the dispersity of $CO_2$ absorption components and decrease their particle size in the sorbents. In addition, fly-ash is used as the supports and pozzolanic reaction is hindered by NaOH in WNCF sorbent. Furthermore, $CO_2$ desorption from the sorbents may be due to fly-ash. The interaction between fly-ash and $CO_2$ absorption components substantially attenuate the strength between captured $CO_2$ in CaO and NaOH.

Strength Properties of Alkali-Activated Lightweight Composites with Alkali Activators of Different Types and Amounts (알칼리 자극제의 종류 및 첨가율에 따른 무시멘트 경량 경화체의 강도특성)

  • Lee, Sang-Soo;Kim, Yun-Mi;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.301-307
    • /
    • 2014
  • In order to reduce the emission of carbon dioxide($CO_2$), this research use blast furnace slag in concrete manufacture, as 100% replacement of cement. The aim of this study is to investigate the density and strength properties of alkali-activated lightweight composites with alkali activators of different types and different amounts. The bubble for achieving the lightweight of alkali-activated lightweight composites was generated in the reaction between the paper ash and the alkali activators instead of using a foaming agent. Lightweight formed concrete was conducted basic experimental for determining replacement ratio of paper ash. Then, the density and strength were measured according to the types and the contents of the alkali accelerator that can react with the paper ash. As results, the optimum replacement ratio of the paper ash was 5%. The alkali activator containing NaOH 12.5% obtained the lowest weight of $1.13g/cm^3$. Also, compressive strength were relatively high. Therefore, this study demonstrated that alkali accelerator with a certain amount of NaOH can achieve relatively high strength and lightweight alkali-activated lightweight composites.

Influence of Paper Mill Sludge and Briquet Ash on the Growth of Zoysiagrass (제지(製紙)슬러지와 연탄재가 들잔디의 생육(生育)에 미치는 영향(影響))

  • Ku, Ja Hyeong;Kim, Tae Il;Ahn, Joo Won;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.153-160
    • /
    • 1992
  • To investigate the potential of paper mill sludge and briquet ash as cultural media in turfgrass, zoysiagrass was grown in the mixtures prepared with paper mill sludge and briquet ash. The mixtures were consisted of sludge and briquet ash in the ratio by volume 3:1, 2:1, 1:1, 1:2, and 1:3 in the order. To compare the growth responses, some plants were grown in the medium containing sand(3), field soil(1) and peatmoss (1) by volume anti regarded as control. 1. Activated sludge mixed with sand increased plant height, fresh weight, and dry weight more than 1.5-2.0 times compared to those of the control. The highest plant growth was shown in mixtures containing 67% activated sludge. 2. Plant density per $100cm^2$ and chlorophyll content were higher in all mixtures containing activated sludge than control. 3. The growth of zoysiagrass was reduced along with the increase of non-activated sludge ratio, but no difference was found in chlorophyll content. 4. Plant height, fresh weight and dry weight were greater in activated sludge combined with sand compared to the briquet ash mixtures, but the difference of shoot density between two mixtures was not shown. 5. Even though non-activated sludge appeared not to be appropriate to the growth of seedlings, the number of tillers of plant propagated with rhizome was more increased compared to control when briquet ash content was less than 75%.

  • PDF

Mechanical and durability properties of fly ash and slag based geopolymer concrete

  • Kurtoglu, Ahmet Emin;Alzeebaree, Radhwan;Aljumaili, Omar;Nis, Anil;Gulsan, Mehmet Eren;Humur, Ghassan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.345-362
    • /
    • 2018
  • In this paper, mechanical and short-term durability properties of fly ash and slag based geopolymer concretes (FAGPC-SGPC) were investigated. The alkaline solution was prepared with a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) for geopolymer concretes. Ordinary Portland Cement (OPC) concrete was also produced for comparison. Main objective of the study was to examine the usability of geopolymer concretes instead of the ordinary Portland cement concrete for structural use. In addition to this, this study was aimed to make a contribution to standardization process of the geopolymer concretes in the construction industry. For this purpose; SGPC, FAGPC and OPC specimens were exposed to sulfuric acid ($H_2SO_4$), magnesium sulfate ($MgSO_4$) and sea water (NaCl) solutions with concentrations of 5%, 5% and 3.5%, respectively. Visual inspection and weight change of the specimens were evaluated in terms of durability aspects. For the mechanical aspects; compression, splitting tensile and flexural strength tests were conducted before and after the chemical attacks to investigate the residual mechanical strengths of geopolymer concretes under chemical attacks. Results indicated that SGPC (100% slag) is stronger and durable than the FAGPC due to more stable and strong cross-linked alumina-silicate polymer structure. In addition, FAGPC specimens (100% fly ash) showed better durability resistance than the OPC specimens. However, FAGPC specimens (100% fly ash) demonstrated lower mechanical performance as compared to OPC specimens due to low reactivity of fly ash particles, low amount of calcium and more porous structure. Among the chemical environments, sulfuric acid ($H_2SO_4$) was most dangerous environment for all concrete types.

A Study on Characteristics of Fly and Bed Ash in Circulating Fluidized Bed Combustion Boiler According to Particle Size of Limestone (석회석 입도의 변화가 석탄회의 성상에 미치는 영향에 관한 연구)

  • Chung Jin-Do;Kim Jang-Woo;Ha Joon-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.587-592
    • /
    • 2006
  • The advantage of CFBC(Circulating fluidized bed combustor) is that it can apply to various fuel sources including the lower rank fuel and remove SOx by means of direct supply of limestone to the combustor without additional desulfation facility. In this paper, we denote characteristics of fly and bed ash to reuse finer limestone usually abandoned(used spec[Coarse LS] 0.1mm under 25%, new spec[Fine LS] 0.1mm under 50%). According to the results, the chemical composition of fly ash was as follows; $SiO_2\;40.8%,\;Al_2O_3\;31.9%,\;CaO\;10.7%,\;K_2O\;4.46%$ in the case of coarse limestone and $SiO_2\;41.1%,\;Al_2O_3\;31.3%,\;CaO\;10.9%,\;K_2O\;4.66%$ in the case of fine limestone. The chemical composition of bed ash was as follows; $SiO_2\;54.2%,\;Al_2O_3\;33.1%,\;CaO\;1.56%,\;K_2O\;4.34%$ in the case of coarse limestone and $SiO_2\;53.8%,\;Al_2O_3\;32.6%,\;CaO\;2.21%,\;K_2O\;4.45%$ in the case of fine limestone. It showed that there was no significant change in chemical composition. And it is conformed that there was no significant change in particle size and shapes.

Durability Performance Evaluation On Early-Aged Concrete with Rice Husk Ash and Silica Fume (Rice Husk Ash와 실리카퓸을 혼입한 초기재령 콘크리트의 내구성능 평가)

  • Saraswathy, Velu;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.343-351
    • /
    • 2015
  • Currently, lots of researches have been performed for reducing cement usages due to increasing social/engineering problems caused by $CO_2$ emission. Supplementary cement materials like fly ash, slag, and silca fume are usually employed for cement replacement, and nowadays rice husk ash (RHA) is widely studied for enhancement of concrete performance as mineral admixture. In this paper, concrete samples with RHA and SF which is known for its engineering advantages are prepared and a resistance to chloride attack is evaluated in early-aged concrete. For the work, replacement ratios of 10~30% for RHA concrete and 2~8% for SF concrete are considered, and various durability tests such as density, void, sorptivity, current measurement, and chloride diffusion coefficient are performed including mechanical test like compressive and tensile strength. Replacement of RHA 10~15% shows better improvement of corrosion resistance and strength than that of SF 2~4% and normal concrete, which shows a strong applicability for utilization as construction materials.

Permeation properties of concretes incorporating fly ash and silica fume

  • Kandil, Ufuk;Erdogdu, Sakir;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • This paper conveys the effects of fly ash and silica fume incorporated in concrete at various replacement ratios on the durability properties of concretes. It is quite well known that concrete durability is as much important as strength and permeability is the key to durability. Permeability is closely associated with the voids system of concrete. Concrete, with less and disconnected voids, is assumed to be impermeable. The void system in concrete is straightly related to the mix proportions, placing, compaction, and curing procedures of concrete. Reinforced concrete structures, particularly those of subjected to water, are at the risk of various harmful agents such as chlorides and sulfate since the ingress of such agents through concrete becomes easy and accelerates as the permeability of concrete increases. Eventually, both strength and durability of concrete reduce as the time moves on, in turn; the service life of the concrete structures shortens. Mineral additives have been proven to be very effective in reducing permeability. The tests performed to accomplish the aim of the study are the rapid chloride permeability test, pressurized water depth test, capillarity test and compressive strength test. The results derived from these tests indicated that the durability properties of concretes incorporated fly ash and silica fume have improved substantially compared to that of without mineral additives regardless of the binder content used. Overall, the improvement becomes more evident as the replacement ratio of fly ash and silica fume have increased. With regard to permeability, silica fume is found to be superior to fly ash. Moreover, at least a 30% fly ash replacement and/or a replacement ratio of 5% to 10% silica fume have been found to be highly beneficial as far as sustainability is concerned, particularly for concretes subjected to chloride bearing environments.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.

A Study on Leaching of Vanadium and Nickel from Incineration Ash of Heavy Oil Fly Ash (중유회 소각재로부터 바나듐, 니켈 침출에 관한 기초적 연구)

  • 유연태;김병규;박경호;홍성웅
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.32-39
    • /
    • 1995
  • Thc purpose of this study is to develop the efficient process for recovering vanadium and nickel from the incineralionash of the oil fly ash. In this paper, the physical and chemical properties of the incineration ash was examined, and theleaching characteristics of the incineration ash were investigated by water leaching and sulEuric acid leaching tcsls. The incinerationash of oil fly ash was mainly consisted of oxldes such as V,09, V,O,, NaVO,, Ni,(VO,)Z, Fe,O,, CaSO,, SiO,.Thc waler leaching showed low extraction of metallic components, while the sulfunc acid lcaching with high temperahlreand pressure increased the extraction of vanadium and nickcl considerably. For instance, the exlraction rates of the metalllccomponents on the sulfuric acid leaching were 99% for V and 45% for Ni at 90$^{\circ}$C with pH 0.5 H,SO,, and were86% for V and 75% far Ni at ZOO"C(64 psi) with pH 1.0 H-SO,. with pH 1.0 H-SO,.

  • PDF