• Title/Summary/Keyword: Paper and salt

Search Result 514, Processing Time 0.026 seconds

Effects of Arc Number or Rotation Range upon Dose Distribution at RapidArc Planning for Liver Cancer (간암환자를 대상으로 한 래피드아크 치료계획에서 아크수 및 회전범위가 선량분포에 미치는 영향)

  • Park, Hae-Jin;Kim, Mi-Hwa;Chun, Mi-Son;Oh, Yeong-Teak;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, we evaluated the performance of 3D CRT, IMRT and three kind of RA plannings to investigate the clinical effect of RA with liver cancer case. The patient undergoing liver cancer of small volume and somewhat constant motion were selected. We performed 3D CRT, IMRT and RA plannings such as 2RA, limited triple arcs (3RA) and 3MRA with Eclipse version 8.6.15. The same dose volume objectives were defined for only CTV, PTV and body except heart, liver and partial body in IMRT and RA plannings. The steepness of dose gradient around tumor was determined by the Normal Tissue Objective function with the same parameters in place of respective definitions of dose volume objectives for the normal organs. The approach between the defined dose constraints and the practical DVH of CTV, PTV and Body was the best in 3MRA and the worst in IMRT. The DVHs were almost the same among RAs. Plans were evaluated using Conformity Index (CI), Homogeneity Index (HI) and Quality of coverage (QoC) by RTOG after prescription with dose level surrounding 98% of PTV in the respective plans. As a result, 3MRA planning showed the better favorable indices than that of the others and achieved the lowest MUs. In this study, RA planning is a technique that is possible to obtain the faster and better dose distribution than 3D CRT or IMRT techniques. Our result suggest that 3MRA planning is able to reduce the MUs further, keeping a similar or better targer dose homogeneity, conformity and sparing normal tissue than 2RA or 3RA.

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

Processing of Water Activity Controlled Fish Meat Paste by Dielectric Heating 1. Formulation and Processing Conditions (내부가열을 이용한 보장성어육(고등어) 연제품의 가공 및 제품개발에 관한 연구 1. 원료${\cdot}$첨가물의 배합 및 가공조건)

  • LEE Kang-Ho;LEE Byeong-Ho;You Byeong-Jin;SUH Jae-Soo;JO Jin-Ho;JEONG In-Hak;JEA Yoi-Guan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.353-360
    • /
    • 1984
  • As an effort to expand the utilization of mackerel which has been thought disadvantageous to processors due to the defects in bloody dark color of meat, high content of lipid, and low stability of protein, and to develope a new type of product, so called, preservative fish meat paste, the processing method was studied in which dielectric heating was applied by means of cooking, pasteurization, dehydration, and control of water activity. The principle of this method is based on that dielectric heating can initiate a rapid dispersion or displacement of moisture in the meat tissue so that the level of water acivity can be controlled by dehydration with hot air meanwhile the product is cooked, pasteurized, and texturized. And the product is finally heated with electric heaters and vacuum sealed to stabilize water activity and storage stability. In present paper, a formula for preparing the fish meat-stach paste, the conditions of dielectric heating and dehydration, shape and size of the product, and other parameters were tested to optimize the process operation. A formula of the fish meat-starch paste to provide proper textural properties and water activity was $10\%$ starch, $1.5\%$ salt, $3\%$ soybean, $0.6\%$ MSG, $2\%$ sucrose, and $3\%$ sorbitol against the weight of fish meat. A proper shape and size of the product to avoid foaming and case hardening during heating was sliced disc of 8 cm $diameter{\times}0.8$ cm thickness or $10{\times}10$ cm square plate with 1.0 cm thickness. The disc shape was recommended because it resulted more uniform heating, minimum foaming and case hardening. And it was also advantageous that disc was simply provided when the fish meat disc was stuffed in the same, solidified in boiling water for 2 to 3 minutes, and sliced. Condition of dielectric heating was critical to decide the levels of sterility, water activity, and textural property of the product. The temperature at the center of the meat disc slices was raised up to $95^{\circ}C$ in 1.5 minutes so that continuous exposure to microwave caused expanded tissue and hardening ending up with a higher water content. Heating for 5 to 6 minutes was adequate to yield the final water activity of 0.86 to 0.83(35 to $40\%$ moisture). It is important, however, that heating had to be done periodically, for instance, in the manner of 2.0, 1.5, 1.5, and 1.0 minute to give enough time to displace or evaporate moisture from the meat tissue. The product was dehydrated for 2 to 3 minutes by hot air of $60^{\circ}C$, 3 to 5m/sec and finally exposed to electric heaters for 5 to 6 minutes until the surface was roasted deep brown. These conditions of heating and dehydration resulted in a complete reduction of total plate count from an initial count of $5.3{\times}10^6/g$ to less than $3{\times}10^2/g$. General composition of the product was $40.1\%$ moisture, $20.8\%$ protein, $17.4\%$ lipid, $16.2\%$ carbohydrate, and $5.5\%$ ash. Textural properties revealed folding test AA, hardness 42, cohesiveness 0.53, toughness 4.6, and elasticity 0.8.

  • PDF

Jang(Fermented Soybean) in Official and Royal Documents in Chosun Dynasty Period (조선조의 공문서 및 왕실자료에 나타난 장류)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.368-382
    • /
    • 2012
  • This paper investigated the system that is relevant to Jang(fermented soybean paste or solution), the relief of hunger-stricken people by Jang, 33 kinds of Jang, and its consumption in the documents, such as the annals of the Chosun Dynasty, Ihlseong-document, Seungjeongwon daily, Uigwe(record of national ceremony), official documents on the basis of Kyujanggak institute for the Korean studies and data base of Korean classics. There are lots of Jang named after the place of particular soybean's production from the ancient times. Jang, soybean, salt and Meju(source of Jang), during the Dynasty, were collected as taxation or tribute. In the 5th year of Hyeonjong(1664), the storage amount of soybean in Hojo(ministry of finance) was 16,200 $k{\ell}$, and its consumption was 7,694 $k{\ell}$ a year. In the 32nd year of Yongjo(1756), the 1,800 $k{\ell}$ of soybean was distributed to the people at the time of disaster, and in his 36th year(1756), the 15,426 $k{\ell}$ of soybean was reduced from the soybean taxation nationwide. The offices managing Jang are Naejashi, Saseonseo, Sadoshi, Yebinshi and Bongsangshi. Chongyoongcheong(Gyeonggi military headquarters) stored the 175.14 $k{\ell}$ of Jang, and the 198 $k{\ell}$ of Jang in Yebinshi. There are such posts managing Jang as Jangsaek, Jangdoo, and Saseonsikjang. In the year of Jeongjong(1777~1800), the royal family distributed the 3.6 $k{\ell}$ of Meju to Gasoon-court, Hygyeong-court, queen's mother-court, queen's court, royal palace. The 13.41 $k{\ell}$ of Gamjang(fermented soybean solution) was distributed to the Gasoon-court, 17.23 $k{\ell}$ to Hegyeong-court, 17.09 $k{\ell}$ to the queen's mother-court, and the 17.17 $k{\ell}$ to the queen's court each. There are 112 Jang-storing pots in the royal storages, and the 690 are in Namhan-hill, where the 2.7 $k{\ell}$ of fermented Jang was made and brought back by them each year. At the time of starvation, Jang relieved the starving people. There are 20 occasions of big reliefs, according to the annals of the Chosun Dynasty. In the 5th year of Sejong(1423), the 360 $k{\ell}$ of Jang was given to the hunger-stricken people. In his 6th year(1424), the 8,512.92 $k{\ell}$ of rice, bean, and Jang was provided and in the 28th year(1446), the 8,322.68 $k{\ell}$ of Jang was also provided to them. In the Dynasty, Jang was given as a salary. In case that when they were bereaved, they didn't eat Jang patiently for its preservation. They were awarded for their filial piety. In the annals of the Chosun Dynasty, there are 19 kinds of Jang. They are listed in the order of Jang(108), Yeomjang(90), Maljang(11), Yookjang(5), Gamjang(4), and etc.,. In Seungjeongwon daily, there are 11 kinds of Jang. Jang(6), Cheongjang (5), Maljang(5), and Tojang(3) are listed in order. In the Ihlseong-document, there are 5 kinds of Jang. They are listed in Jang(15), Maljang(2), Gamjang(2), and etc.,. There are 13 kinds of Jang in Uigwe, and the official documents, in the order of Gamjang(59), Ganjang(37), Jang(28), Yeomjang(7), Maljang(6), and Cheongjang(5). In addition, shi are Jeonshi(7), and Dooshi(4). All these are made of only soybean except, for Yookjang. The most-frequently recorded Jang among anthology, cookbook, the annals of the Chosun Dynasty, Ihlseong-document, Seoungjeongwon daily, Uigwe, or official document is Jang(372), and then Yeomjang(194), Gamjang(73), Cheongjang(46), Ganjang(46), Soojang(33), and Maljang(26), which were made of soybean. Jang from China in cookbook is not in anthology and royal palace documents. Thus, traditional Jang made of soybean was used in the daily food life in the royal court, and in the public during the Chosun period.