• Title/Summary/Keyword: Panel regression model

Search Result 394, Processing Time 0.036 seconds

Panel data analysis with regression trees (회귀나무 모형을 이용한 패널데이터 분석)

  • Chang, Youngjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1253-1262
    • /
    • 2014
  • Regression tree is a tree-structured solution in which a simple regression model is fitted to the data in each node made by recursive partitioning of predictor space. There have been many efforts to apply tree algorithms to various regression problems like logistic regression and quantile regression. Recently, algorithms have been expanded to the panel data analysis such as RE-EM algorithm by Sela and Simonoff (2012), and extension of GUIDE by Loh and Zheng (2013). The algorithms are briefly introduced and prediction accuracy of three methods are compared in this paper. In general, RE-EM shows good prediction accuracy with least MSE's in the simulation study. A RE-EM tree fitted to business survey index (BSI) panel data shows that sales BSI is the main factor which affects business entrepreneurs' economic sentiment. The economic sentiment BSI of non-manufacturing industries is higher than that of manufacturing ones among the relatively high sales group.

A Bayesian inference for fixed effect panel probit model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2016
  • The fixed effects panel probit model faces "incidental parameters problem" because it has a property that the number of parameters to be estimated will increase with sample size. The maximum likelihood estimation fails to give a consistent estimator of slope parameter. Unlike the panel regression model, it is not feasible to find an orthogonal reparameterization of fixed effects to get a consistent estimator. In this note, a hierarchical Bayesian model is proposed. The model is essentially equivalent to the frequentist's random effects model, but the individual specific effects are estimable with the help of Gibbs sampling. The Bayesian estimator is shown to reduce reduced the small sample bias. The maximum likelihood estimator in the random effects model is also efficient, which contradicts Green (2004)'s conclusion.

A Study of Generalized Maximum Entropy Estimator for the Panel Regression Model (패널회귀모형에서 최대엔트로피 추정량에 관한 연구)

  • Song, Seuck-Heun;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.521-534
    • /
    • 2006
  • This paper considers a panel regression model with ill-posed data and proposes the generalized maximum entropy(GME) estimator of the unknown parameters. These are natural extensions from the biometries, statistics and econometrics literature. The performance of this estimator is investigated by using of Monte Carlo experiments. The results indicate that the GME method performs the best in estimating the unknown parameters.

An Empirical Study of Port SOC Impact on Trade Volume : Focusing on Japanese Ports (항만 SOC가 수출입에 미치는 영향 실증분석 - 일본 항만을 중심으로 -)

  • Ahn, Young-Gyun;Lee, Joo-Won
    • Korea Trade Review
    • /
    • v.41 no.5
    • /
    • pp.373-389
    • /
    • 2016
  • This study mainly investigates the port SOC's impact on trade volume. In order to investigate the relationships between port SOC and trade volume, we did the empirical analysis using panel data regression and fixed effects model. The total period of 97 years and 1,082 ports' information were applied to panel data and regression model. According to the results, the coefficients of development of container berth, development of bulk berth, maintenance of port, the jetty facilities like breakwater have positive(+) impact on the dependent variable, the trade volume. Especially, the jetty facilities show a strongly positive impact on trade volume. On the other hand, the development of new port and navigation facilities like lighthouse have a negative(-) impact. In examining Hausman test and LR test, the fixed effect model is statistically more appropriate than the random effect model for this study.

  • PDF

A Study on Road Transport Network And Economy effect in Korea: Application of SNA and Spatial Panel Regression (국내 지역별 도로운송네트워크가 지역경제에 미치는 영향: SNA 및 공간패널회귀모형의 적용)

  • Jin-Ho Oh;Jae-Seon Ahn;Zhen Wu
    • Korea Trade Review
    • /
    • v.47 no.2
    • /
    • pp.175-193
    • /
    • 2022
  • This study analyzes the effects of road transportation networks on the local economy in korea. The analysis methods are SNA and spatial panel regression model. The subjects of this study are inland areas of Korea, and the research period is from 2010 to 2019. The network analysis showed that the connection centrality of Gyeongg-do was high internally and externally. Gyeonggi-do has played a central role in the domestic road freight transportation industry. The results of spatial panel regression analysis showed that there was economic competition between regions. Domestic road transportation industry has been competitive among regions and has economic ripple effect. And Internal cargo has been shown to boost the economy of the region. But internal cargo has been shown to lower the economy of surrounding regions, but external cargo has been shown to increase the economy. In order to revitalize the local economy, it is necessary to increase road cargo.

Onion yield estimation using spatial panel regression model (공간 패널 회귀모형을 이용한 양파 생산량 추정)

  • Choi, Sungchun;Baek, Jangsun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.873-885
    • /
    • 2016
  • Onions are grown in a few specific regions of Korea that depend on the climate and the regional characteristic of the production area. Therefore, when onion yields are to be estimated, it is reasonable to use a statistical model in which both the climate and the region are considered simultaneously. In this paper, using a spatial panel regression model, we predicted onion yields with the different weather conditions of the regions. We used the spatial auto regressive (SAR) model that reflects the spatial lag, and panel data of several climate variables for 13 main onion production areas from 2006 to 2015. The spatial weight matrix was considered for the model by the threshold value method and the nearest neighbor method, respectively. Autocorrelation was detected to be significant for the best fitted model using the nearest neighbor method. The random effects model was chosen by the Hausman test, and the significant climate variables of the model were the cumulative duration time of sunshine (January), the average relative humidity (April), the average minimum temperature (June), and the cumulative precipitation (November).

An Analysis of the Determinants of Employment Productivity in Korean Transportation Industry Using Korea Labor and Income Panel Study (한국노동패널자료를 활용한 국내 운송업 고용생산성 결정요인 분석)

  • So, Ae-rim;Shin, Seung-sik
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.1
    • /
    • pp.57-76
    • /
    • 2019
  • This study deals with the determinants of employment productivity of transportation labor, who are the main agents of the transportation industry that has made significant contributions to our country's industrial development. The study selected the determinants of employment productivity using the Korea Labor and Income Panel Study data, and analyzed the effects of various factors using panel logistic regression, panel OLS model, and panel robust regression. The results were as follows. First, a more positive effect was shown when employees held a regular job, had a "high level of education", "joining the labor union" and "experiencing vocational training". Second, in the case of job security, having a "high level of education" and "joining the labor union" showed a more positive effect; further, job security was higher for employees who worked in a "big company" or were "married". Third, in the case of higher income productivity, higher values of "age", "academic ability" and "company size" had a more positive effect, whereas larger values of "education" and "health condition except job training" had a negative one. Fourth, in the case of job satisfaction, "female", "joining the labor union" and having a higher "income" or "job security" led to higher satisfaction and a better "health condition compared to an average person". Further, a higher "overall life satisfaction" and "economic level" led to lower job satisfaction. The analysis of the determinants of employment productivity of transportation business and seeking for improvement plan is expected to improve the employment productivity in the transportation business.

Design-based Properties of Least Square Estimators in Panel Regression Model (패널회귀모형에서 회귀계수 추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 2011
  • In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.

  • PDF

A computational note on maximum likelihood estimation in random effects panel probit model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.315-323
    • /
    • 2019
  • Panel data sets have recently been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Often a dichotomous dependent variable occur in survival analysis, biomedical and epidemiological studies that is analyzed by a generalized linear mixed effects model (GLMM). The most common estimation method for the binary panel data may be the maximum likelihood (ML). Many statistical packages provide ML estimates; however, the estimates are computed from numerically approximated likelihood function. For instance, R packages, pglm (Croissant, 2017) approximate the likelihood function by the Gauss-Hermite quadratures, while Rchoice (Sarrias, Journal of Statistical Software, 74, 1-31, 2016) use a Monte Carlo integration method for the approximation. As a result, it can be observed that different packages give different results because of different numerical computation methods. In this note, we discuss the pros and cons of numerical methods compared with the exact computation method.

Effect of Private Health Insurance on Medical Care Utilization: Six Year Unbalanced Panel Data Model (민간의료보험 가입 유형별 의료 이용: 6개년 불균형패널 분석)

  • You, Chang-Hoon;Kang, Sung-Wook;Choi, Ji-Heon;Kwon, Young-Dae
    • The Korean Journal of Health Service Management
    • /
    • v.11 no.3
    • /
    • pp.51-64
    • /
    • 2017
  • Objectives : This study examined the effect of private health insurance on medical care utilization by subscription type. Methods : The data used were the six waves of the Korea Health Panel (2009-2014), and 16,187 persons were the subjects of the analysis. We performed a panel regression with a fixed effects model. Results : Indemnity private health insurance was positively related to the number of physician visits, number of admissions, and total length of stays. However, fixed-benefit private health insurance was not related to medical care utilization. Conclusions : The result of this study, which shows the difference by subscription type in the effect of private health insurance on medical care utilization, suggests that continuous monitoring of indemnity private health insurance is needed in the future.