• Title/Summary/Keyword: Panel optimization

Search Result 258, Processing Time 0.025 seconds

Bioprocess Control for Continuous Culture of Dunaliella Salina in Flat Panel Photobioreactor (평판형 광생물반응기의 Dunaliella Salina 연속배양을 위한 생물공정 제어)

  • Kim, Gwang Ho;Ahn, Dong-Gyu;Park, Jong Rak;Choi, Gang Hun;Kim, Jong Tye;Kim, Ki Won;Jeong, Sang Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • The indiscriminate use of the fossil fuel has caused serious environmental pollutions such as the shortage of energy and global warming. Microalgae have being emphasized as $3^{rd}$ generation biomass which makes the carbon dioxide reduce effectively as well as produces the biofuel. Large scale production of microbial biomass by continuous culture is a quite challenging issue, because off-line optimization strategies of a microbial process utilizing a model-based scheme give rise to many difficult problems. In this paper, the static and simple control method which was able to be applied in time-variant growth environment and large scale of algae culture was studied. The significant disturbances in on-line measurement of cell density were reduced by Savitzky-Golay FIR smoothing filter. Dunaliella salina was cultivated continuously in a flat panel photobioreactor by the on-off control of the turbidostat process.

Development of Two-Shot Injection-Compression Soft Instrument Panel (2샷 사출 압축 소프트 인스트루먼트 패널 개발)

  • Kong, Byung-Seok;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.638-643
    • /
    • 2019
  • In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), it was developed the new IP which is made by the two kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger airbag door. We named it 'IMX-IP' which means that all components ('X') of the IP with different resins are made in a mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ method, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot injection with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.

Design Optimization of Differential FPCB Transmission Line for Flat Panel Display Applications (평판디스플레이 응용을 위한 차동 FPCB 전송선 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho;Lee, Hyung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.879-886
    • /
    • 2008
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. The 10% change in trace width produced change of approximately 6% and 5.6% in differential impedance for trace thickness of $17.5{\mu}m$ and $35{\mu}m$, respectively. The change in the trace space showed a little change. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

Design of 2-Dimensional WIG Section by a Nonlinear Optimization Method (비선형 최적화 기법을 이용한 2차원 지면효과익의 형상설계)

  • Hee-Jung Kim;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.50-59
    • /
    • 1999
  • This paper is concerned on the generation of an optimal section of wing in ground effect by a SQP method which is one of nonlinear optimization techniques. A potential panel method is used for the flow analysis and the ground effect is taken into account by an image method. The numerical method is first verified by an inverse problem where a shape of wing section is sought for the prescribed pressure distribution. The purpose of the present paper is to generate a wing section which can give a maximum lift subjected to the design constraints including the height stability which is important in the WIG design. The effect of the tail wing is also included.

  • PDF

A Study on the Optimization of the Free-Form Buildings Façade Panels (비정형 건축물 외장패널의 최적화에 관한 연구)

  • Lim, Jang-Sik;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • The outer surface of an irregular structure contains panels with two-directional curvature called NURBS. To construct these forms of exterior materials, complex geometric surface should be divided into forms and sizes that can be manufactured and constructed. Because the bigger the curvatures of these divided exterior panel, the more expensive the construction costs, these complex two-directional curvatures should go through optimal process of reinterpretation to minimize the curved surfaces with complex two-directional curvatures. Yet, to gain higher ground in technological competition in the field of irregular structure construction, companies do not share know-how that they obtained. Accordingly, small construction and design companies have trouble calculating even rough estimate and cannot adjust expected construction cost based on comparison of design alternatives. Given this situation, this study conducted the research that can support decision-making in the design stage of the construction and provide basic material for optimal range to reduce manufacturing cost by the minimizing the distorted plane of the irregular structure.

Design Optimization Considering Optical Performances for LCD/BLU Using PIDO (PIDO를 이용한 LCD/BLU의 광학성능 최적화)

  • Lee, Gab-Seong;Park, Seon-Ho;Yoon, Sang-Joon;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.720-725
    • /
    • 2009
  • Among many kinds of parts for Liquid Crystal Display (LCD), a Back Light Unit (BLU) that changes the path of the light from light source to screen is the most important part to improve optical performances such as uniformity and average value of brightness. Up to recently, design process of BLU has been carried out by depending on the experience of design engineer. Using this approach, however, is proven that it is hard to effectively deal with difficulties in a process of the LCD development such as frequent design modifications, various design requirements, and short-term development. To cope with this situation, we applied a Process Integration and Design Optimization (PIDO) based design environment. PIDO is a software package to integrate multiple simulation processes and find a better solution using various design techniques. In this research, we found a design solution satisfying all design requirements by using the PIDO.

Laser Drilling System for Fabrication of Micro via Hole of PCB (인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector (전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화)

  • Kwak, Do Hyuk;Jung, Hwa Young;Lee, Jae Eun;Kang, Kwang Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.

Hull Form Generation of Minimum Wave Resistance by a Nonlinear Optimization Method (비선형 최적화 기법에 의한 최소 조파저항 선형 생성)

  • Hee-Jung Kim;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.11-18
    • /
    • 2000
  • This paper is concerned with the generation of an optimal forward hull form by a nonlinear programming method. A Rankine source panel method based on the inviscid and potential flow approximation is employed to calculate the wave-making resistance and SQP method is also used for the optimization. The hull form is represented by a spline function. The forward hull form of a minimum wave resistance with the given design constraints is generated. In addition, the forward hull form of a minimum total resistance by considering the frictional resistance together with an empirical form factor is produced and compared with the former result.

  • PDF