• Title/Summary/Keyword: Panel model

Search Result 2,170, Processing Time 0.029 seconds

Corporate Debt Choice: Application of Panel Sample Selection Model (기업의 부채조달원 선택에 관한 연구: 패널표본선택모형의 적용)

  • Lee, Ho Sun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.428-435
    • /
    • 2015
  • When I examined the corporate financing statistics in Korea, I have recognized that there are several trends of them. First, large enterprises use bank loan and direct financing like corporate bond as debt. Second, small and medium companies mainly use bank loan only. So I argue that there is sample selection bias in corporate debt choice and using sample selection methodology is more adequate when analysing the behavior in corporate debt choice. Therefore I have tested panel sample selection model, using the listed korean firm data from 1990 to 2013 and I have found that the panel sample selection model is appropriate.

A study of an oyster monthly forecasting model using the structural equation model approach based on a panel analysis

  • Sukho Han;Seonghwan Song;Sujin Heo;Namsu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.949-961
    • /
    • 2022
  • The purpose of this study is to build an oyster outlook model. In particular, by limiting oyster items, it was designed as a partial equilibrium model based on a panel analysis of a fixed effect model on aquaculture facilities. The model was built with a dynamic ecological equation (DEEM) system that considers aquaculture and harvesting processes. As a result of the estimation of the initial aquaculture facilities based on the panel analysis, the elasticity of the remaining facility volume in the previous month was estimated to be 0.63. According to Nerlove's model, the adjustment coefficient was interpreted as 0.31 and the adjustment speed was analyzed to be very slow. Also, the relative income coefficient was estimated to be 2.41. In terms of elasticity, it was estimated as 0.08% in Gyeongnam, 0.32% in Jeonnam, and 1.98% in other regions. It was analyzed that the elasticity of relative income was accordingly higher in non-main production area. In case of the estimation of the monthly harvest facility volume, the elasticity of the remaining facility volume in the previous month was estimated as 0.53, and the elasticity of the farm-gate price was estimated as 0.23. Both fresh and chilled and frozen oysters' exports were estimated to be sensitive to fluctuations in domestic prices and exchange rates, while Japanese wholesale prices were estimated to be relatively low in sensitivity, especially to the exchange rate with Japan. In estimating the farm-gate price, the price elasticity coefficient of monthly production was estimated to be inelastic at 0.25.

Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank (AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발)

  • Jeon, S.J.;Lee, M.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

Traffic Accident Analysis of Link Sections Using Panel Data in the Case of Cheongju Arterial Roads (패널자료를 이용한 가로구간 교통사고분석 - 청주시 간선도로를 사례로 -)

  • Kim, Jun-Young;Na, Hee;Park, Byung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • This study deals with the accident model using panel data which are composed of time series data of 2005 through 2007 and cross sectional data of link sections in Cheongju. Panel data are repeatedly collected over time from the same sample. The purpose of the study is to develop the traffic accident model using the above panel data. In pursuing the above, this study gives particular attentions to deriving the optimal models among various models including TSCSREG (Time Series Cross Section Regression). The main results are as follows. First, 8 panel data models which explained the various effects of accidents were developed. Second, $R^2$ values of fixed effect models were analyzed to be higher than those of random effect models. Finally, such the variables as the sum of the number of crosswalk on intersections and sum of the number of intersections were analyzed to be positive to the accidents.

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Onion yield estimation using spatial panel regression model (공간 패널 회귀모형을 이용한 양파 생산량 추정)

  • Choi, Sungchun;Baek, Jangsun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.873-885
    • /
    • 2016
  • Onions are grown in a few specific regions of Korea that depend on the climate and the regional characteristic of the production area. Therefore, when onion yields are to be estimated, it is reasonable to use a statistical model in which both the climate and the region are considered simultaneously. In this paper, using a spatial panel regression model, we predicted onion yields with the different weather conditions of the regions. We used the spatial auto regressive (SAR) model that reflects the spatial lag, and panel data of several climate variables for 13 main onion production areas from 2006 to 2015. The spatial weight matrix was considered for the model by the threshold value method and the nearest neighbor method, respectively. Autocorrelation was detected to be significant for the best fitted model using the nearest neighbor method. The random effects model was chosen by the Hausman test, and the significant climate variables of the model were the cumulative duration time of sunshine (January), the average relative humidity (April), the average minimum temperature (June), and the cumulative precipitation (November).

Unsteady Heat Transfer Analysis of Radiant Heating Panel (복사 난방 패널의 과도 열전달 해석)

  • Lee, T.W.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.191-203
    • /
    • 1992
  • To analyze the unsteady heat transfer phenomena in radiant heating panel, a mathematical model was considered. Numerical analysis for solving the governing equations was conducted by using the finite difference method with boundary-fitted meshes. Transient temperature distributions and thermal responses in heating panel were obtained for various design parameters such as pipe pitches, pipe diameters and pipe depths. Experimental results were also obtained to verify the results of calculation.

  • PDF

An Effective Auto-Focusing Method for Curved Panel Inspection System (곡면 패널 검사를 위한 효율적인 오토 포커싱 방법)

  • Lee, Hwang-Ju;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.709-714
    • /
    • 2017
  • The curved panel is widely used for display of TVs and smart phones. This paper proposes a new auto-focusing method for curved panel inspection system. Since the distance between the camera and the panel varies with the curve position, the camera should change its focus at every inspection time. In order to reduce the focusing time, we propose an effective focusing method that considers the mathematical model of panel curve. The Lagrange polynomial equation is applied to modeling the panel curve. The foci of initial three points are used to get the curve equation, and the other foci are calculated automatically from the curve equation. The experiment result shows that the proposed method can reduce the focusing time.

Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel (자동차 외판 특징선 곡면의 단면 형상 측정과 분석)

  • Choe, W.C.;Chung, Y.C.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.