• 제목/요약/키워드: Pancreatic stellate cells

검색결과 2건 처리시간 0.013초

The inhibitory effects of Nardostachys jatamansi on alcoholic chronic pancreatitis

  • Bae, Gi-Sang;Park, Kyoung-Chel;Koo, Bon-Soon;Choi, Sun-Bok;Jo, Il-Joo;Choi, Chang-Min;Song, Ho-Joon;Park, Sung-Joo
    • BMB Reports
    • /
    • 제45권7호
    • /
    • pp.402-407
    • /
    • 2012
  • Nardostachys jatamansi (NJ) belonging to the Valerianaceae family has been used as a remedy for gastrointestinal inflammatory diseases for decades. However, the potential for NJ to ameliorate alcoholic chronic pancreatitis (ACP) is unknown. The aim of this study was to examine the inhibitory effects of NJ on ACP. C57black/6 mice received ethanol injections intraperitoneally for 3 weeks against a background of cerulein-induced acute pancreatitis. During ACP, NJ was ad libitum administrated orally with water. After 3 weeks of treatment, the pancreas was harvested for histological examination. NJ treatment increased the pancreatic acinar cell survival (confirmed by amylase level testing) and reduced collagen deposition and pancreatic stellate cell (PSC) activation. In addition, NJ treatment reduced the activation but not death of PSC. In conclusion, our results suggest that NJ attenuated ACP through the inhibition of PSC activation.

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang ;Xinmiao Li ;Yuxiang Gao ;Qiqi Tao;Zhichao Lang;Yating Zhan;Chunxue Li;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.534-542
    • /
    • 2023
  • Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.