• 제목/요약/키워드: Panchromatic Images

검색결과 134건 처리시간 0.023초

Image Fusion Methods for Multispectral and Panchromatic Images of Pleiades and KOMPSAT 3 Satellites

  • Kim, Yeji;Choi, Jaewan;Kim, Yongil
    • 한국측량학회지
    • /
    • 제36권5호
    • /
    • pp.413-422
    • /
    • 2018
  • Many applications using satellite data from high-resolution multispectral sensors require an image fusion step, known as pansharpening, before processing and analyzing the multispectral images when spatial fidelity is crucial. Image fusion methods are to improve images with higher spatial and spectral resolutions by reducing spectral distortion, which occurs on image fusion processing. The image fusion methods can be classified into MRA (Multi-Resolution Analysis) and CSA (Component Substitution Analysis) approaches. To suggest the efficient image fusion method for Pleiades and KOMPSAT (Korea Multi-Purpose Satellite) 3 satellites, this study will evaluate image fusion methods for multispectral and panchromatic images. HPF (High-Pass Filtering), SFIM (Smoothing Filter-based Intensity Modulation), GS (Gram Schmidt), and GSA (Adoptive GS) were selected for MRA and CSA based image fusion methods and applied on multispectral and panchromatic images. Their performances were evaluated using visual and quality index analysis. HPF and SFIM fusion results presented low performance of spatial details. GS and GSA fusion results had enhanced spatial information closer to panchromatic images, but GS produced more spectral distortions on urban structures. This study presented that GSA was effective to improve spatial resolution of multispectral images from Pleiades 1A and KOMPSAT 3.

Quadratic Programming Approach to Pansharpening of Multispectral Images Using a Regression Model

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제24권3호
    • /
    • pp.257-266
    • /
    • 2008
  • This study presents an approach to synthesize multispectral images at a higher resolution by exploiting a high-resolution image acquired in panchromatic modality. The synthesized images should be similar to the multispectral images that would have been observed by the corresponding sensor at the same high resolution. The proposed scheme is designed to reconstruct the multispectral images at the higher resolution with as less color distortion as possible. It uses a regression model of the second order to fit panchromatic data to multispectral observations. Based on the regression model, the multispectral images at the higher spatial resolution of the panchromatic image are optimized by a quadratic programming. In this study, the new method was applied to the IKONOS 1m panchromatic and 4m multispectral data, and the results were compared with them of several current approaches. Experimental results demonstrate that the proposed scheme can achieve significant improvement over other methods.

Fitting to Panchromatic Image for Pansharpening Combining Point-Jacobian MAP Estimation

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.525-533
    • /
    • 2008
  • This study presents a pansharpening method, so called FitPAN, to synthesize multispectral images at a higher resolution by exploiting a high-resolution image acquired in panchromatic modality. FitPAN is a modified version of the quadratic programming approach proposed in (Lee, 2008), which is designed to generate synthesized multispectral images similar to the multispectral images that would have been observed by the corresponding sensor at the same high resolution. The proposed scheme aims at reconstructing the multispectral images at the higher resolution with as less spectral distortion as possible. This study also proposes a sharpening process to eliminate some distortions appeared in the fused image of the higher resolution. It employs the Point-Jacobian MAP iteration utilizing the contextual information of the original panchromatic image. In this study, the new method was applied to the IKONOS 1m panchromatic and 4m multispectral data, and the results were compared with them of several current approaches. Experimental results demonstrate that the proposed scheme can achieve significant improvement in both spectral and block distortion.

IKONOS Panchromatic 영상과 Multispectral 영상의 IHS 및 PCA 중합 (IHS and PCA Merging of IKONOS Panchromatic and Multispectral Images)

  • 안기원;이효성;박병욱;신석효
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.207-210
    • /
    • 2007
  • 본 연구에서는 고해상도의 IKONOS panchromatic 영상과 multispectral 영상을 IHS와 PCA 방법으로 중합하고 그 결과를 비교하였다. 평가에 있어서는 중합된 영상들과 원영상간의 필셀 값에 대한 평균제곱근오차를 구하고 그 결과를 분석하였다. 분석 결과, multispectral band 1, 3, 4를 사용하는 IHS 방법, multispectral band 1, 2, 4를 사용하는 IHS 방법 및 multispectral band 1, 3, 4를 사용하는 PCA 방법이 원영상의 특성을 잘 보존하는 것으로 평가되었다.

  • PDF

Landsat TM과 SPOT Panchromatic 인공위성 영상자료를 이용한 토지피복분류 및 분석 (Land Cover Classification and Analysis using Remotely Sensed Images Landsat TM with SPOT Panchromatic)

  • 함종화;윤춘경;김성준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.765-770
    • /
    • 1999
  • The purpose of this study is to obtain land classification map by using remotely sensed data; Landsat TM and SPOT panchromatic, and to compare their results with statistical data and digitized coverage from topographic paper map. The classification was conducted by maximum likelihood method with training sets. The best result was obtained from the Landsat TM merged by SPOT Panchromatic, that is, similar with statistical data. This is caused by setting more precise training sets with the enhanced spatial resolution by using SPOT Panchromatic. The classified map may be useful as a fundamental data to estimate pollutant load in regional scale of agricultural watershed.

  • PDF

IKONOS 영상을 이용한 EO-1 Hyperion Hyperspectral 영상자료의 고해상도 구축 (High Resolution Reconstruction of EO-1 Hyperion Hyperspectral Images Using IKONOS Images)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제24권6호
    • /
    • pp.631-639
    • /
    • 2008
  • 본 연구에서는 상업용 위성에 탑재된 센서에서 감지된 고해상도의 범색 영상과 다중분광 영상을 이용하여 저해상도의 초분광 영상을 고해상도로 재구축하는 방법을 IKONOS영상과 30-1의 Hyperion 영상에 대한 적용을 통하여 제시하고 있다. 제안된 초분광 영상의 고해상도 재구축은 Lee(2008b)에 의해 개발된 FitPAN-Mod를 기반으로 하여 30m 급의 공간해상도의 초분광 영상을 1m 급의 공간해상도의 범색 영상 수준으로 공간해 상도를 향상시킨다. 본 연구에서는 세 번의 FitPAN-Mod를 사용하는 저해상도의 영상의 고해상도 재구축 과정을 걸쳐 범색 영상의 파장구간에 속하는 초분광 영상의 50개 밴드에 대해 재구축이 이루어졌다. 실험 결과는 재구축된 영상은 시각적 평가에서 실험 대상 지역 내 범색 영상이 갖고 있는 자세한 공간적 구조를 잘 표현하고 있으며 저해상도에서 세부적 위치에 따라 구분하여 표현할 수 없는 지표면의 좁은 밴드대역의 분광특성을 잘 표현하고 있음을 보여준다. 이러한 결과는 제안된 재구축 방법이 현재의 센서 기술로 수집할 수 없는 고해상도의 초분광 영상의 대체 영상을 생성할 수 있는 기술로서 잠재력을 갖고 있음을 보여준다.

A Study for the Adaptive wavelet-based Image Merging method

  • Kim, Kwang-Yong;Yoon, Chang-Rak;Kim, Kyung-Ok
    • 대한공간정보학회지
    • /
    • 제10권5호
    • /
    • pp.45-51
    • /
    • 2002
  • The goal of image merging techniques are to enhance the resolution of low-resolution images using the detail information of the high-resolution images. Among the several image merging methods, wavelet-based image merging techniques have the advantages of efficient decorrelation of image bands and time-scale analysis. However, they have no regard for spatial information between the bands. In other words, multiresolution data merging methods merge the same information-the detail information of panchromatic image-with other band images, without considering specific characteristics. Therefore, a merged image contains much unnecessary information. In this paper, we discussed this 'mixing' effect and, proposed a method to classify the detail information of the panchromatic image according to the spatial and spectral characteristics, and to minimize distortion of the merged image.

  • PDF

A Classification Technique for Panchromatic Imagery Using Independent Component Analysis Feature Extraction

  • Byoun, Seung-Gun;Lee, Ho-Yong;Kim, Min;Lee, Kwae-Hi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.23-28
    • /
    • 2002
  • Among effective feature extraction methods from the small-patched image set, independent component analysis (ICA) is recently well known stochastic manner to find informative basis images. The ICA simultaneously learns both basis images and independent components using high order statistic manners, because that information underlying between pixels are sensitive to high-order statistic models. The topographic ICA model is adapted in our experiment. This paper deals with an unsupervised classification strategies using learned ICA basis images. The experimental result by proposed classification technique shows superior performance than classic texture analysis techniques for the panchromatic KOMPSAT imagery.

  • PDF

The Classifications using by the Merged Imagery from SPOT and LANDSAT

  • Kang, In-Joon;Choi, Hyun;Kim, Hong-Tae;Lee, Jun-Seok;Choi, Chul-Ung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.262-266
    • /
    • 1999
  • Several commercial companies that plan to provide improved panchromatic and/or multi-spectral remote sensor data in the near future are suggesting that merge datasets will be of significant value. This study evaluated the utility of one major merging process-process components analysis and its inverse. The 6 bands of 30$\times$30m Landsat TM data and the 10$\times$l0m SPOT panchromatic data were used to create a new 10$\times$10m merged data file. For the image classification, 6 bands that is 1st, 2nd, 3rd, 4th, 5th and 7th band may be used in conjunction with supervised classification algorithms except band 6. One of the 7 bands is Band 6 that records thermal IR energy and is rarely used because of its coarse spatial resolution (120m) except being employed in thermal mapping. Because SPOT panchromatic has high resolution it makes 10$\times$10m SPOT panchromatic data be used to classify for the detailed classification. SPOT as the Landsat has acquired hundreds of thousands of images in digital format that are commercially available and are used by scientists in different fields. After the merged, the classifications used supervised classification and neural network. The method of the supervised classification is what used parallelepiped and/or minimum distance and MLC(Maximum Likelihood Classification) The back-propagation in the multi-layer perception is one of the neural network. The used method in this paper is MLC(Maximum Likelihood Classification) of the supervised classification and the back-propagation of the neural network. Later in this research SPOT systems and images are compared with these classification. A comparative analysis of the classifications from the TM and merged SPOT/TM datasets will be resulted in some conclusions.

  • PDF

Biorthogonal Wavelets-based Landsat 7 Image Fusion

  • Choi, Myung-Jin;Kim, Moon-Gyu;Kim, Tae-Jung;Kim, Rae-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.724-726
    • /
    • 2003
  • Currently available image fusion methods are not efficient for fusing the Landsat 7 images. Significant color distortion is one of the major problems. In this paper, using the well-known wavelet based method for data fusion between high-resolution panchromatic and low-resolution multispectral satellite images, we performed Landsat 7 image fusion. Based on the experimental results obtained from this study, we analyzed some reasons for color distortion. A new approach using the biorthogonal wavelets based method for data fusion is presented. This new method has reached an optimum fusion result - with the same spectral resolution as the multispectral image and the same spatial resolution as the panchromatic image with minimum artifacts.

  • PDF