• Title/Summary/Keyword: Panax leaves

Search Result 195, Processing Time 0.032 seconds

Effect of Growth Temperature on the Composition of Leaf Lipids in Panax ginseng (인삼잎의 지질조성에 주는 재배온도의 영향)

  • Park, Hoon;Cho, Byung-goo
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 1987
  • Panu ginseng (6 Year old) was grown $17^{\circ}C$/$15^{\circ}C$ and $27^{\circ}C$ day/$23^{\circ}C$ night in the light room of phytotron for 84 days. The composition of neutral lipid(NL), glycolipid(GL), phospholipid(PL) and fatty acids were investigated in leaves. The contents of NL and GL were higher in $25^{\circ}C$ while PL was lower. Similarity (simple correlation) of lipid composition between $16^{\circ}C$ and $25^{\circ}C$ was not significant for PL and GL but significant for NL(p = 0.001), indicating that PL and GL were important factors in the mostability. Similarity of fatty acid composition between growth temperatures was highly significant (p = 0.001) for all three lipids, while similarity between lipids was significant between NL and PL (p=0.01) and NL and GL (p=0.05), but nonsignificant between GL and PL at $16^{\circ}C$. .In NL digalactosyldiacylglycerol (3->$7^{\circ}$) increased but monogalactosyldiacylglycerol (10%) did not change at $25^{\circ}C$. In PL phosphatidic acid (22 -> 4%) and phosphatidylinositol (18 -> 5%) decreased but phosphatidyl ethanolamine (12->l6%) increased at $25^{\circ}C$. Percent unsaturated acid slightly decreased in NL and PL but greatly increased in GL at $25^{\circ}C$. Percent unsaturated bond slightly decreased in NL but did not change in PL and GL.

  • PDF

Studies on the Effect of Shading Materials on the Temperature, Light Intensity, Photosynthesis and. the Root Growth of the Korean Ginseng(Panax Ginseng C.A. Meyer) (차광하의 온도 및 광도가 고려인삼의 광합성 및 근생장에 미치는 영향)

  • 이종철;천성기;김요태;조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.91-98
    • /
    • 1980
  • Three kinds of shading materials, styrol-foam board, pine board and polytex, were examined and compared with ordinary shading, and the effects of light intensity and the temperature under the shadings on the photosynthesis and the root growth of the Korean ginseng were studied to improve the shading on the ginseng field. The amounts of photosynthesis of the ginseng leaves at 2$0^{\circ}C$ were significantly larger than those at 3$0^{\circ}C$ in the same light intensity. At 2$0^{\circ}C$, the maximum photosynthesis occured at 35, 000 lux, but at 3$0^{\circ}C$, the amount of photosynthesis was rapidly reduced by higher light intensity over 26, 200 lux. The best root growth occurred under the polytex shading and the styrol-foam board shading was also effective for ginseng growth. Under the ordinary shading, the root growth of ginseng planted on rear line was very poor but under the styrol-foam or the polytex shading, the root growth showed little difference between the ginsengs planted on rear line and front line.

  • PDF

Cloning and Molecular Analysis of cDNA Encoding Cycloartenol Synthase from Centella asiatica (L.) Urban

  • Kim Ok-Tae;Kim Min-Young;Hwang Sung-Jin;Ahn Jun-Cheul;Hwang Baik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • cDNA for oxidosqualene cyclase was cloned by a homology-based PCR method and sequenced from Centella asiatica. In a sequences analysis, the putative polypeptide of C. asiatica cycloartenol synthase (CaCYS) deduced from the 2,274 bp nucleotide sequence, consisted of 758 amino acids and had a molecular mass of 86.3 kD. The predicted amino acid sequence exhibited high homology to that of PNX (cycloartenol synthase) from Panax ginseng ($89\%$). Southern blot analysis suggests that CaCYS may be present in one copy of the C. asiatica genome. If methyl jasmonate (MJ) is applied exogenously to plants, not only triterpene saponins are accumulated in tissues, but also it produces effects such as growth inhibition and the promotion of ethylene production. In order to investigate the effect of MJ and thidiazuron (TDZ), a cytokinin that plays a role as an antisenescence agent in several plants, on the level of CaCYS mRNA, we performed northern blot analysis. When MJ is alone treated by adding to culture medium, CaCYS transcripts were inhibited. However, sustained levels of the expression of CaCYS, by adding TDZ to the medium despite MJ treatments, were demonstrated in C. asiatica leaves.

Saponins of Korean Ginseng C.A. Meyer(PartII)-The saponins of the ground part of ginseng- (한국인삼(韓國人蓼)의 Saponin에 관(關)한 연구(硏究)제2보(第二報)-인삼지상부(人蔘地上部) Saponin함량(含量)에 관(關)하여-)

  • Cho, Sung-Hwan
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.142-146
    • /
    • 1977
  • For the purpose of utilizing the saponins of the ground part of Panax ginseng, the studies on saponins isolated from the leaves, stems, and flowers of ginseng were Performed. The results were summarized as follows: 1. The crude saponin contents of ginseng loaves, stems, and flowers 12.8%, 1.6% and 6.9% respectively. 2. Infra-red spectrum of ginseng leaf saponin was identical with that of ginseng root.

  • PDF

Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf (인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

Ginseng anthracnose in Korea Factors affecting primary inoculum, growth of the pathogen, disease development and control (인삼${\cdot}$탄저병에 관한 연구 전염원, 병원균의 생태, 발병요인 및 방제)

  • Chung Hoo-Sup;Bae Hyo-Won
    • Korean journal of applied entomology
    • /
    • v.18 no.1 s.38
    • /
    • pp.35-41
    • /
    • 1979
  • Four to $17\%$ of the seeds of ginseng (Panax ginseng Meyer) collected from seemingly healthy plants carried Colletotrichum panacicola Nakata et Takimoto whereas the seeds from the plants with anthracnose sympotoms carried $42\%$ of the same fungus. Prevalent organisms isolated other than C. panacicola from seeds of both kinds of plants were Fusarium, Alternaria, Phoma, Trichoderma and others, ana in that order on acidified potato sucrose agar. C. panacicola also was isolated from 18 months old herbarium specimens. The fungus in the infected tissues also survived during the Korean winter months either on the soil surface or in the soil at 10 and 30 em in depth. When conidial suspensions of C. panacicola were inoculated on detached ginseng leaves, anthracnose symptoms occurred from 25 to $35^{\circ}C$. No symptoms occurred at temperatures below $17^{\circ}C$. Direct sunlight increased significantly the number of anthracnose lesions over those obtained in leaves inoculated in darkness or in 400 lux of fluorescent light. The lesions decreased as age of the leaves increased or as the number of conidia applied decreased. Optimum temperature for mycelial growth and conidial formation of C. panacicola was $25^{\circ}C$. Optimum pH for the mycelial growth was at $pH\;2.8\~4.6$ while the most conidial formation occurred at $pH\;5.2\~5.8.$. When fungicides were applied in the field to ginseng plants with a conidial suspension of C. panacicola, the most effective control of the anthracnose disease was by spraying with difolatan, and followed by maneb, zineb, captan and phaltan; Bordeaux mixture and ferbam were significantly less effective but significantly better than the inoculated control plants.

  • PDF

PLANT BIOCHEMISTRY OF GINSENG SAPONINS(III) Radioactive Studies (2). Sodium Acetate-U-$C^{14}$ Experiment

  • The Korean Society of Ginseng The Korean Society of Ginseng
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.101-113
    • /
    • 1974
  • The radioactive compound sodium $acetate-U-C^{14}$ (C-14 acetate) was administered to two- and four-year-old July and September American ginseng (Panax quinquefolium L.) plants and cuttings. The C-14 acetate uptake was approximately $99\%.$ The autoradiochromatograms suggest that the saponins(panaquilins) isolated by preparative thin-layer chromatography contained impurities, especially those isolated from the leaf and stem extracts. The root and fruit methanol extracts yielded relatively pure saponins. The large amounts of panaquilin B and its proximity to panaquilin C on preparative thin-layer plates resulted in some admixing. The average concentration $(\%$ plant dry weight) of semipurified saponins were high in the leaves $(13.8\%),$ compared to fruits $(9.8\%),\;stems\;(7.9\%)\;and\;roots\;(6.3\%).$ The average percentage of C-14 acetate incorporation into panaquilins was $4.8\%.$ The average percentage of C-14 acetate incorporation into panaquilins B and C was higher $(1.40\%\;and\;1.13\%,$ respectively) than that into panaquilin C, (d), G-1 and G-2 $(0.75\%,\;0.65\%,\;0.13\%\;and\;0.53\%,$ respectively). Panaquilin synthesis may be depending upon the part collection period and age of the plant. The average percentage of C-14 acetate incorporation into panaquilin B is high in roots $(0.58\%)\;and\;stems\;(0.48\%);$ that into panaquilins C and (d) high in leaves $(0.40\%\;and\;0.45\%,$ respectively); and that into panaquilin E high in roots and leaves $(0.55\%\and\;0.50\%,$ respectively). Panaquilin G-2 was synthesized in all parts of plants. The panaquilins appear to be biosynthesized more actively in July than September (exception-panaquilin G-l). Panaquilins B, C and G-1 may be biosynthesized more actively in four-year-old plants and panaquilins (d) and E more actively in two-year-old plants. The results from expectance with cuttings suggest that the panaquilins are synthesized de novo in the above-ground parts of ginseng plants, and that panaquilin G-l may be synthesized de novo in the leaf. It is known from the tissue culture studies that panaquilins are produced by leaf, stem and root callus tissues and callus-root cultures of American and Korean ginseng plants. Panaquilins may actively be synthesized de novo in most any cell or organ of the ginseng plants. It was verified that C-14 acetate was incorporated into the panaxadiol portions of the panaquilins of two-year-old plants (sp. act., 0.56 $m{\mu}Ci/mg$) and four-year-old plants (sp. act., 0.54 $m{\mu}Ci/mg$).

  • PDF

Comparative Analysis on Concentration and Synthetic Amount of Water Soluble and Water Insoluble Carbohydrates with Different Plant Tissues, Growth Stages and Years Old of Panax ginseng C. A. Meyer (인삼의 연생, 생육시기 및 식물체 부위별 수용성과 불수용성 탄수화물 함량과 합성저장량 비교)

  • Park, Seong Yong;Ahn, Bok Ju;Ahn, Hee Jung;Lee, Gyeong A;Heo, Su Jeong;Jeong, Haet Nim;Song, Beom Heon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.4
    • /
    • pp.292-297
    • /
    • 2015
  • This study was carried out to have the basic and applied informations relating to develop the cultivation methods and to increase the productivity and quality of ginseng. 1 to 6 year old ginsengs of Jakyung cultivar were cultivated and the content and synthetic amount of carbohydrates were investigated with different plant tissues, growth stages, and years old. The concentration of total carbohydrates at six year old ginseng including water soluble and water insoluble carbohydrates was about 18.9%, 42.9%, and 43,6% in leaves, tap roots, and lateral roots, respectively. Water soluble carbohydrate of tap and lateral roots was slightly decreased from August until September, and then increased on November, whereas its water insoluble carbohydrate was increased from August to September and then decreased on November. Comparing with the content of carbohydrates of 1 to 6 year old ginsengs, it was continuously increased from one year old ginseng until five year old ginseng, however it was not increased much in six year old ginseng. The highest content of carbohydrates was at five year-old in all tissues of ginseng. Water soluble and water insoluble carbohydrates were significantly shown different in leaves, stems, tap roots, and lateral root at different growth stages and with different years old. The content of water soluble carbohydrate in the leaves was remarkedly higher compared to that of water insoluble carbohydrate, while in the root the content of water insoluble carbohydrate was clearly higher compared to the water soluble carbohydrate. Comparing with the synthetic amount of carbohydrates, water soluble carbohydrates was higher in the shoot than that in the root, whereas water-insoluble carbohydrates higher in the root than that in the shoot. Carbohydrates which would be utilized in ginseng tissues for short and long-term periods as major energy were appeared differently in between shoot and root, with different growth stages, and years old.

Studies on the Ginseng Plants(III) -Radioactive Sodium $Acetate-U-C^{14}$ Feeding Experiments- (인삼식물(人參植物)에 관한 연구(III) -동위원소화합물(洞位元素化合物) Sodium $Acetate-U-C^{14}$을 투여한 실험-)

  • Kim, Jung-Yun;Staba, E. John
    • Korean Journal of Pharmacognosy
    • /
    • v.5 no.2
    • /
    • pp.111-124
    • /
    • 1974
  • The radioactive compound sodium $acetate-U-C^{14}\;(C^{14}-acetate)$ was administered to two- and four-year-old July and September American ginseng (Araliaceae, Panax quinquefolium L.) plants and cuttings. The $C^{14}-acetate$ uptake was approximately 99%. The autoradiochromatograms suggest that the saponins isolated by preparative thin-layer chromatography contained impurities, especially those isolated from the leaf and stem extracts. The root and fruit methanol extracts yielded relatively pure saponins. The large amounts of panaquilin B and its proximity to panaquilin C on preparative thin-layer plates resulted in some admixing. The average concentration (% plant dry weight) of semi-purified saponins were high in the leaves (13.8%), as compared to fruits (9.8%), stems (7.9%) and roots (6.3%). The average percentage of $C^{14}-acetate$ incorporation into panaquilins was 4.8%. The average percentage of $C^{14}-acetate$ incorporation into panaquilins B and C was higher (1.40% and 1.13%, respectively) than that into panaquilins C, (d), G-1 and G-2 (0.75%, 0.65%, 0.13% and 0.53%, respectively). Panaquilin synthesis may be depending upon the part, collection period and age of the plant. The average percentage of $C^{14}-acetate$ incorporation into panaquilin B is high in roots (0.58%) and stems (0.48%); that into panaquilins C and (d) high in leaves (0.40% and 0.45%, respectively); and that into panaquilin E high in roots and leaves (0.55% and 0.50%, respectively). Panaquilin G-2 was synthesized in all parts of plants. The panaquilins appear to be biosynthesized more actively in July than September (exception-panaquilin G-1). Panaquilins B, C and G-1 may be biosynthesized more actively in four-year-old plants and panaquilins (d) and E more actively in two-year-old plants. The results from expectance with cuttings suggest that the panaquilins are synthesized de novo in the above-ground parts of ginseng plants, and that panaquilin G-1 may be synthesized de novo in the leaf. It is known from the tissue culture studies that panaquilins are produced by leaf, stem and root callus tissues and cailus-root cultures of American and Korean ginseng plants. Panaquilins may actively be synthesized de novo in most any cell or organ of the ginseng plants. It was verified that $C^{14}-acetate$ was incorporated into the panaxadiol portions of the panaquilins of two-year-old plants (sp. act. 0.56 mmcCi/mg) and four-year-old plants $(sp.\;act.\;0.54\;m{\mu}Ci/mg)$.

  • PDF

Effects of Dietary Panax Ginseng, Dioscorea Japonica and Oriental Medicine Refuse on Productivity of Korean Native Chicken (인삼, 산약, 한약부산물의 급여가 재래닭의 생산성에 미치는 영향)

  • Kim, B.K.;Hwang, I.E.;Kang, S.S.;Shin, S.H.;Woo, S.C.;Kim, Y.J.;Hwang, Y.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.297-304
    • /
    • 2002
  • This study was conducted to investigate the influence of dietary Panax Ginseng Refuse(PGR), Dioscorea Japonica Refuse(DJR) and Oriental Medicine Refuse(OMR) on performance(feed intake, body weight gain, feed conversion, mortality) of Korean Native Chicken(KNC). KNC were randomly assigned to one of the 4 dietary treatment : 1) control(commercial feed), 2) PGR(commercial feed supplemented with 5% panax ginseng leaves) 3) DJR(commercial feed with 5% dioscorea japonica hulls and 4) OMR (commercial feed with 5% oriental medicine refuse). 160 KNC were fed one of the above experimental diet for 12 weeks and slaughtered at 20 weeks of age. Daily DM intake of control, PGR, DJR and OMR diet were 125.79g, 122.26g, 122.30g and 123.72g, respectively, with no significantly difference(p$>$0.05). The DM utilizability of control and DJR(62.89% and 61.20%) diets were higher(p$<$0.05) than those of PGR and OMR(55.44% and 59.76%)(p$<$0.05). 16 weeks weight of bird fed control, PGR, DJR and OMR diets were 1,436.6g, 1,427.2g, 1,546g and 1,422.0g respectively with DJR being the highest than other treatments(p$<$0.05). Total feed intake of control, PGR, DJR and OMR diets were 6,087g, 5,947g, 5,816g and 5,852g, respectively where control was higher than other treatments. The feed conversion of PGR, DJR and OMR were higher than the control. Chicken housed mortality of control, PGR, DJR and OMR were respectively 24, 15, 13 and 20 birds with rather lower mortality in the supplented groups(p$<$0.05). The body weight, carcass weight and carcass yield were not different among the treatments. But abdominal fat of chicken in control and OMR groups were higher than that of DJR and PGR groups.