• Title/Summary/Keyword: Pan coefficient

Search Result 108, Processing Time 0.031 seconds

Friction and Wear Properties of Fiber Reinforced Composite (섬유보강 복합재의 마찰 및 마모특성)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok;Hong, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.733-740
    • /
    • 1994
  • Oxidized-PAN fiber reinforced composite(OFRP), carbon fiber reinforced composite(CFRP), aramid fiber reinforced composite(AFRP), and glass fiber reinforced composite(GFRP) were fabricated with phenolic resin matrix by hot press molding. We tested the friction coefficient and wear rate varying with fiber weight fraction and observed the effect of fibers according to characteristics of individual reinforcement. When the amount of aramid fiber was 45wt%, average friction coefficient was maximum value of 0.353~0.383, where as, when the amount of pitch based carbon fiber was 45wt%, average friction coefficient was the lowest value of 0.164~0.190. The wear rate of AFRP and CFRP was low, but that of GFRP and OFRP increases drastically in the case of increasing of fiber weight fraction. Wear diagram of OFRP was unstable, but that of CFRP and AFRP was a bit stable. Through very unstable diagram of GFRP, we found that friction stability of GFRP was the lowest.

  • PDF

A Simulation Model for Estimating Evapotranspiration of Soybean Crop (콩 생육시기별 증발산량의 추정모형 설정)

  • Son, Eung-Ryong;Eom, Ki-Cheol;Ryu, Kwan-Sig;Kim, Ki-Joon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.254-261
    • /
    • 1988
  • Lysimeter and field experiments were conducted in Sandy Loam to establish a simple estimation model for evapotranspiration (ET) of soybean for three years (l984-1986). Potential ET (PET) could be estimated by the eq.1 using Pan-evaporation (Eo) and was ranged from 1.1 to 4.6 mm/day during the experiments. PET (mm/day)=1.348+0.573 Eo …(1) Crop coefficient (Kc=maximum ET/PET) could be estimated by the eq.2 using Growth degree (G=days after planting/total growing days) and was ranged from 0.2 to 1.1 and from 0.6 to 1.4 for monoculture cropping and double cropping followed by barley, respectively, during the experiments. Monoculture : Kc=0.016+3.719 G-3.224 G$^2$…(2), Double cropping : Kc=0.609+2.014 G-2.120 G$^2$…(2). However, the maximum Kc was shown when G was about 50% and 40% for the monoculture and the double cropping, respectively. Soil water coefficient (f=AET/maximum ET) could be estimated by the eq.3 using soil water tension (Ψ) in 15cm depth. and it was decleased to 0.2 when Ψ was 10 bar. f=0.755-0.537 log │Ψ│…(3) Consequentially, the model to estimate the Actual ET (AET) of soybean was determined as eq.4 with the correction coefficient of -0.380. AET(mm/day)=PETㆍKcㆍf -0.380 …(4) The estimated AET were compared with the measured AET to verify the model established above. The average deviation of the estimated ET(AET) was 0.5782$\pm$0.338 (mm/day), and it would be within reasonable confidence range.

  • PDF

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증)

  • Sur, Chan-Yang;Han, Seung-Jae;Lee, Jung-Hoon;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.435-448
    • /
    • 2012
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.

The Performance of Li/V6O13 Lithium Polymer Battery (Li/V6O13 리튬 폴리머 전지의 성능)

  • Kim, Hyung-Sun;Cho, Byung-Won;Yun, Kyung-Suk;Chun, Hai-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.362-370
    • /
    • 1996
  • The performance of The performance of $Li/V_6O_{13}$ cell and the electrochemical properties of polymer electrolyte based on poly(acrylonitrile)[PAN] was investigated. The ionic conductivity of polymer electrolyte showed $2.3{\times}10^{-3}S/cm$ and the compatibility with lithium electrode was excellent. Also, it showed the electrochemical stability up to 4.3V(vs. $Li^+/Li$). The cell reaction of $Li/V_6O_{13}$ was dominated by the interfacial resistance between $V_6O_{13}$ electrode and polymer electrolyte. The diffusion coefficient of lithium ion within $V_6O_{13}$ was $2.7{\times}10^{-9}{\sim}4.2{\times}10^{-8}cm^2/sec$. The utilization of $V_6O_{13}$ active material was 95% at C/8($50{\mu}A/cm^2$) and 82% at C/4($100{\mu}A/cm^2$), respectively.

  • PDF

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Regression Modeling of Water-balance in Watershed (유역(流域) 물 수지(收支)의 회귀모형화(回歸模型化))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.324-333
    • /
    • 1983
  • Modeling of longterm runoff is theoritically based on waterbalance analysis. Simplified equation of water balance with rainfall, evapotranspiration and soil moisture storage could be formulated into regression model with variables of rainfall, pan evaporation and previous-month streamflow. The hydrologic response of water shed could be represented lumpedly, qualitatively and deductively by regression coefficients of water-balance regression model. Characteristics of regression modeling of water-balance were summarized as follows; 1. Regression coefficient $b_1$ represents the rate of direct runoff component of precipitation. The bigger the drainage area, the less $b_1$ value. This means that there are more losses of interception, surface detension and transmission in the downstream watershed. 2. Regression coefficient $b_2$ represents the rate of baseflow due to changes of soil moisture storage. The bigger the drainage area and the milder the watershed slope, the bigger b, value. This means that there are more storage capacity of watershed in mild downstream watershed. 3. Regression coefficient $b_3$ represents the rate of watershed evaporation. This depends on the s oil type, soil coverage and soil moisture status. The bigger the drainage area, the bigger $b_3$ value. This means that there are more watershed evaporation loss since more storage of surface and subsurface water would be in down stream watershed. 4. It was possible to explain the seasonal variation of streamflow reasonably through regress ion coefficients. 5. Percentages of beta coefficients what is a relative measure of the importance of rainfall, evaporation and soil moisture storage to month streamflow are approximately 89%, 9% and 11% respectively.

  • PDF

Characteristics of Atmospheric Dry Deposition of Nitrogen-containing Compounds (대기 중 질소산화물의 건식침적 특성)

  • Yi, Seung-Muk;Han, Young-Ji;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.775-784
    • /
    • 2000
  • Nitrate dry deposition fluxes were directly measured using knife-leading-edge surrogate surface (KSS) covered with greased strips and a water surface sampler (WSS). The average gaseous flux ($8.3mg/m^2/day$) was much higher than the average particulate one ($3.0mg/m^2/day$). The best fit gas phase mass transfer coefficient (MTC) of $HNO_3$ was obtained by linear regression analysis between measured gaseous flux containing nitrogen compounds and measured ambient $HNO_3$ concentration. The result showed that the MTCs of $HNO_3$ were approximately two times higher than those of $SO_2$. Especially, during the ozone action day, measured gaseous fluxes containing nitrogen compounds were much higher than those ones calculated as the product of measured ambient $HNO_3$ concentration and gas phase MTC of $HNO_3$, which is calculated from MTC of $SO_2$ using Graham's diffusion law. This result indicated that other nitrogen compounds except $HNO_3$ contributed to gaseous flux containing nitrogen compounds into the water surface sampler. The theoretical calculations suggest the contributions of nitrous acid ($HNO_2$) and PAN to the gaseous dry deposition flux of nitrogen containing compounds to the WSS.

  • PDF

Growth Effect of Mixed Organic Fertilizer Blending Poultry Manure Compost in Leaf Vegetables (가공계분 함유 혼합유기질비료의 시비효과)

  • Kim, Young-Sun;Lee, Tae-Soon;Cho, Sung-Hyun;Jeong, Je-Yong;An, Ji-Ye;Lee, Jong-Jin;Han, Ki-Pil;Hong, Joo-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.45-54
    • /
    • 2017
  • Poultry manure compost (PMC) as the organic fertilizer sources has a high nutrient content such as nitrogen, phosphate and potassium, and its properties been affected by bulking agent. This study was conducted to evaluate properties of mixed organic fertilizer (MOF) containing PMC composting with sawdust and peat moss as bulking agent, and to measure a characteristics of plant growth by their application. The MOF containing 10~30 % PMC had a coincidency with its guideline in Korea. As applied with MOF containing PMC composting with sawdust (PMCS) or MOF containing PMC composting with peat moss (PMCP), dry weight of plant was increased in MOF treatments blending with 10~30 % PMCS or 10~30 % PMCP. In correlation coefficient between blending ratio of PMC in MOFs and plant growth indexes, PMCS was not significantly different, but its PMCP a positive effect (P<0.05). These results indicated that PMC was able to blend about 10~30 % as mixed organic fertilizer source, and its application increased in plant growth.

An Efficient VLSI Architecture for the Discrete Wavelet Transform (이산 웨이브렛 변환을 위한 효율적인 VLSI 구조)

  • Pan, Sung-Bum;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.96-103
    • /
    • 1999
  • This paper proposes efficient VLSI architecture for computation of the 1-D discrete wavelet transform (DWT). The proposed VLSI architecture computes the wavelet lowpass and highpass output sequences using the product term anhm, $n,m{\ge}0$, where an and hm denote the imput sequence and the wavelet lowpass filter coefficient, respectively. Whereas the conventional architectures compute the lowpass and highpass output sequences using the product terms anhm and angm, respectively, where gm denotes the wavelet highpass filter coefficient. The proposed architecture is applied to computation of the Daubechies 4-tap wavelet transform using the relationships between the Daubechies wavelet filter coefficients. Performance comparison of various architectures for computation of the 1-D DWT are presented. Note that the proposed architecture does not require extra processing units whereas the conventional architectures need them. Also it is modeled in very high speed integrated circuit hardware description language (VHDL) and simulated to show its functional validity.

  • PDF