• Title/Summary/Keyword: Palm oil

Search Result 333, Processing Time 0.026 seconds

Utilization of Steam-treated Oil Palm Fronds in Growing Saanen Goats: II. Supplementation with Energy and Urea

  • Paengkoum, Pramote;Liang, J.B.;Jelan, Z.A.;Basery, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1623-1631
    • /
    • 2006
  • The objective of this study was to evaluate the effect of protein and energy on goats fed oil palm fronds (OPF) as roughages. Twenty-four male Saanen goats aged between 7 and 8 months and weighing $23.4{\pm}1.6kg$ were used in a $2{\times}3$ factorial design. Factors were three levels of urea (3%, 4% or 5%) and two levels of energy (low energy (LE) or high energy (HE)). On average, all parameters measured, including dry matter intake (DMI), nutrient digestibility, digestible nutrient intakes, ruminal ammonia-N ($NH_3$-N), ruminal total volatile fatty acid (total VFA) and individual VFA concentrations (mM/L), microbial N supply, P/E ratio and N retention were higher for HE compared to LE diets. Significant (p<0.05) interactions were found between levels of urea and energy for nonstructural carbohydrate (NSC) and energy (DE) digestibilities, ruminal $NH_3$-N and total VFA concentrations. HE diets had higher N absorption and retention than LE diets. Interactions between urea and energy for plasma urea nitrogen (PUN), heat production (HP), and urine and faeces N excretion were significantly lower (p<0.05) for the HE diets than those recorded for the LE diets. The results indicated that supplementation of energy enhanced utilization of urea and resulted in higher animal performance as a consequence of improved ruminal fermentation, microbial yield and N balance. However, the optimal level of urea supplementation remained at 3% in the HE diet.

Effect of Phenol Formaldehyde Impregnation on The Physical and Mechanical Properties of Soft-Inner Part of Oil Palm Trunk

  • Hartono, Rudi;Hidayat, Wahyu;Wahyudi, Imam;Febrianto, Fauzi;Dwianto, Wahyu;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.842-851
    • /
    • 2016
  • The objective of this study was to improve physical and mechanical properties of soft-inner part of oil palm trunk (S-OPT) after impregnation with phenol formaldehyde (PF) resin and densification by close system compression (CSC) method. Effect of different methods of PF resin impregnation (i.e., no vacuum-pressure, vacuum, and vacuum-pressure) was evaluated. The results showed that PF resin impregnation and CSC significantly improved the physical and mechanical properties of S-OPT up to: (1) 176% in density; (2) 309% in modulus of rupture (MOR); (3) 287% modulus of elasticity (MOE); and (4) 191% in the compressive strength. Physical and mechanical properties of S-OPT showed their best performances when PF resin impregnated with vacuum-pressure method as shown by higher weight gain, density, MOR, MOE, compressive strength, and lower recovery of set due to better penetration of PF resin into S-OPT. Combining PF resin impregnation and densification by CSC method could be a good method to improve physical and mechanical properties of S-OPT.

Changes in the Process Efficiency and Product Properties of Pulp Mold by the Application of Oil Palm EFB (오일팜 EFB 섬유 적용에 따른 펄프몰드 공정효율 및 제품품질 변화)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The demand of environmental friendly packaging materials such as pulp mold has been increased. The application of the oil palm biomass, EFB (Empty Fruit Bunch) fiber as natural raw materials to the pulp mold could increase the usability of the pulp mold by the reduced production cost brought from the relatively low cost of EFB. The effects of the EFB(Empty Fruit Bunch) fibers on the properties of pulp mold and on the process efficiency were evaluated in this study. The pulp mold samples were prepared with mixture ONP (Old news paper) and EFB by using laboratory wet pulp molder. The changes in the drying efficiency were measured with the changes in the solid contents of pulp mold samples during drying process. The efficiency of the surface coating treatment on the pulp mold depending on the condition of the pulp mold samples were also evaluated in order to improve the water resistance properties of pulp mold. The addition of EFB increased the drying efficiency by providing the bulkier structure and the higher water contact angle, which indicated the better water resistance properties. The water resistance were improved by the surface coating treatments and the application of surface coating on the pulp mold at the higher moisture contents resulted in the higher improvement in the water resistance. The bulkier structure originated from the application of EFB fiber reduced the effects of the surface coating, which could be overcome by the control of surface coating process.

Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments (표면처리에 의한 오일팜 EFB 기반 펄프몰드의 흡수특성 변화)

  • Kim, Dong-Sung;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • The applicability of oil palm biomass, EFB(Empty Fruit Bunch) as raw materials for environmental friendly packaging material, pulp mold, was evaluated in this study. The changes in the water absorption properties of pulp mold by the addition of EFB and the surface treatments with PVA and AKD were analyzed by measuring the changes in the water absorption rate and the water contact angle. The each pulp mold sample was prepared by using laboratory wet pulp molder. And the water absorption rate of each samples were evaluated by measuring times for the absorption of a 0.1 ml water drop on the pulp mold sample surface. The addition of EFB to the pulp mold made of OCC resulted in the decrease of water absorption rate and the increase in the water contact angle. The surface treatments with PVA and AKD on the OCC pulp mold showed the significant reduction in the water absorption rate. However, in case of ONP pulp mold, the addition of EFB and the surface treatments with PVA and AKD showed no big changes in water absorption times. Those might be come from the finer surface structure of ONP pulp mold which were made of more finer and flexible fibers and more hydrophilic fibers. The results of this study showed the functional properties such as water absorption rate, could be controlled by the application of EFB and the treatments with AKD or PVA, especially in case of the OCC pulp mold.

Evaluation of Defiberation by Organosolv Ethanolamine Pulping for Integral Utilization of Oil Palm EFB (오일팜 바이오매스 EFB 고도 활용을 위한 Organosolv 에탄올아민 펄핑에 따른 섬유화 특성평가)

  • Kim, Chul-Hwan;Kim, Dong-Seop;Sung, Yong Joo;Hong, Hae-Eun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • Organosolv ethanolamine pulping for oil palm empty fruit bunches(EFB) were evaluated in this study. The screen yield by the ethanolamine pulping were higher than that by the soda pulping at the same operation conditions. The higher concentration of ethanolamine solvent resulted in the higher yield and the lower contents of residual lignin. The EFB pulp fibers were the narrower in fiber width but the higher in coarseness than those of the hardwood pulp fiber, while the fiber length of the EFB pulp fiber were similar to that of the hardwood fiber. The intrinsic zero span tensile testing showed the EFB pulp fiber by the 80% ethanolamine pulping were the stronger than the fiber by the soda pulping. The results of this study supported that the ethanolamine pulping could be used as an alternative pulping method for the EFB.

Physical-Mechanical Properties of Laminated Board Made from Oil Palm Trunk (Elaeis guineensis Jacq.) Waste with Various Lamina Compositions and Densifications

  • PRABUNINGRUM, Dita Sari;MASSIJAYA, Muh Yusram;HADI, Yusuf Sudo;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.196-205
    • /
    • 2020
  • The purpose of this study was to investigate a method for improving the physical and mechanical properties of laminated board made from oil palm trunk (OPT). The effects of pretreating the lamina with heat-pressure and altering the lamina composition of the laminated board were investigated. The outer third of OPT in cross-section had high-density wood, while the underlying third had low to medium density. The hot press was applied to pretreat the lamina that had low to medium density. The lamina were 1.5 cm in thickness, 5 cm in width, and 65 cm in length. The hot press was applied at 2.94 MPa or 4.41 MPa at 150 ℃ for 60 minutes, and the target thickness of the lamina was 1 cm. The three layers of the laminated board samples were bonded with isocyanate adhesive at a glue spread of 300 g/㎡ and cold pressed at 0.98 MPa for 3 h. The laminated board samples were tested according to Japanese Agricultural Standard (JAS) 234-2003. The results showed that the densification of the inner lamina did not significantly affect the physical-mechanical properties of the laminated board produced. However, the laminated board made with high-density laminas for the outer layers fulfilled the JAS 234-2003 standard for the modulus of elasticity and the modulus of rupture.

Characterization of a Tacky Poly(3-Hydroxyalkanoate) Produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oil

  • YUN, HYE SUN;DO YOUNG KIM;CHUNG WOOK CHUNG;HYUNG WOO KIM;YOUNG KI YANG;YOUNG HA RHEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • Pseudomonas chlororaphis HS21 was isolated from a soil sample and found to produce medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using palm kernel oil (PKO) as the sole carbon source. Up to 3.3 g/1 dry cell weight containing $45\%$ MCL-PHA was produced, when the strain was grown for 21 h in a jar fermentor culture containing 5 g/1 PKO. The polymer produced from PKO consisted of unsaturated monomers of $7.3\%$ 3-hydroxy-5-cis-tetradecenoate and $2.3\%$ 3-hydroxy-5,8,-cis, cis-tetradecadienoate as well as saturated even-carbon number monomers ranging from $C_6\;to\;C_14$, as determined by GC and El GC/MS The PHA was a transparent, sticky material at room temperature. A differential scanning calorimetric analysis revealed that the polymer was amorphous with a $-44^{\circ}C$ glass transition temperature. The number average molecular weight and polydispersity index of the PHA were 83,000 and 1.53, respectively. Although the PHA was practically biodegradable, its degradability was lower than that of poly(3-hydroxyoctanoate) based on a comp:trison of the clear zones formed by growing PHA depolymerase-producing bacteria on an agar plate containing the respective polymers.

Quality Improvement of Oil Palm Trunk Properties by Close System Compression Method

  • Hartono, Rudi;Wahyudi, Imam;Febrianto, Fauzi;Dwianto, Wahyu;Hidayat, Wahyu;Jang, Jae-Hyuk;Lee, Seung-Hwan;Park, Se-Hwi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.172-183
    • /
    • 2016
  • Densification of the inner part of oil palm trunk (OPT) by the close system compression (CSC) method was performed in this study. The effects of the compression temperature and time on the anatomical, physical and mechanical properties of OPT were evaluated. The inner part of OPT with an initial average density of $0.3g/cm^3$ was used as samples. Oven-dried samples were immersed in water and vacuumed until fully saturated and then compressed by CSC at 120, 140, 160 or $180^{\circ}C$ for 10, 20, 30 or 40 min. The anatomical characteristics of transverse and radial sections before and after compression were compared by optical microscopy. The physical and mechanical properties, including the density, recovery of set (RS), modulus of elasticity (MOE), modulus of rupture (MOR), and compression parallel to grain were examined. It was observed that the anatomical characteristic of the inner part of OPT (i.e., vascular bundles, vessels, and parenchyma tissue) became flattened, fractured, and collapsed after compression by CSC. The RS decreased with increasing compression temperature and time. The lower RS indicated high dimensional stability. The physical and mechanical properties (i.e., density, MOR, MOE, and compressive strength) of the inner part of OPT increased with increasing compression temperature and time. Compression by the CSC method at $160^{\circ}C$ for 40 min was the optimum treatment.

Studies on the Development of Cocoa Butter Equivalent Fat by Reverse - Micelle Enzyme Reaction System (역마이셀-효소반응계에 의한 코코아 버터 대용지 개발에 관한 연구)

  • Yoon, Seung-Heon;Shin, Woong-Kyu;Lee, Yoon-Hyung;Rhee, Kyu-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 1992
  • Production of cocoa butter equivalent fat (CBE) from palm oil and stearic acid by reverse micelle lipase reaction system was studied. Qualitative and quantitative analyses of triglycerides were performed by HPLC. The reaction conditions for maximum conversion from triolein and stearic acid to 1-stearoyl-2,3-dioleoyl glycerol(SOO) and 1,3-distearoyl-2-oleoyl glycerol(SOS) were as follows: a molar ratio of water/Aerosol OT, 10; triolein, 30 mM; stearic acid, 90 mM; pH, 7.5; and temperature, $50^{\circ}C$. By lipase in reverse micellar system containing palm oil and stearic acid, 1,3-dipalmitoyl-2-oleoyl glycerol(POP), 1-palmitoyl-2,3-dioleoyl glycerol(POO) and SOO decreased, but large amounts of 1-palmitoyl-2-oleoyl-3-stearoyl glycerol(POS) and SOS was formed.

  • PDF

Antioxidative Activity of Ethanol Extract from Korean Medicinal Plants (국내산 약용식물 추출물의 항산화 효과 검색과 용매 분획물의 비교)

  • Lim, Dae-Kwan;Choi, Ung;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 1996
  • To evaluate the antioxidative activity of the ethanol extracts from 116 domestic medicinal plants, each extract was added to palm oil and lard in 1,000 ppm level, and the induction time was measured by Rancimat method. Almost all plant extracts tested showed more or less antioxidative activity. The extracts which had strong antioxidative activity to palm oil and lard were Caesalpinia sappan L., Paeonia japonica Miyabe et Takeda, Dendrobium moniliforme (L.) Sw and Crcumae longa L. These extracts were fractionated with chloroform, ethyl acetate, butanol and water. Ethyl acetate layer of Caesalpinia sappan L. and Paeonia japonica Miyabe et Takeda showed marked antioxidative activity, and chloroform layer of Dendrobium moniliforme (L.) Sw and Crcumae longa L. ethanol extract had stronger antioxidative activity than all the other layers.

  • PDF