• Title/Summary/Keyword: Palladium ion

Search Result 39, Processing Time 0.02 seconds

Metal Complexes of Ambidentate Ligand(Ⅳ). Nickel(Ⅱ) and Palladium(Ⅱ) Complexes of bis(isonitrosoacetylacetone)diimine Derivatives (Ambidentate 리간드의 금속착물 (제 4 보). Bis(isonitrosoacetylacetone)diimine 유도체를 리간드로 하는 니켈(Ⅱ) 및 팔라듐(Ⅱ) 착물)

  • Man-Ho Lee;Seon-Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.428-435
    • /
    • 1988
  • Some nickel(Ⅱ) and palladium(Ⅱ) complexes of the ambidentate ligands derived from condensation of the isonitrosoacetylacetone and various diamines, $Ni(IAA)_2-en$, $Ni(IAA)_2-pn$, $Ni(IAA)_2-tn$, $Pd(IAA)_2-en$, PdCl(IAA)-pn, and $Pd(IAA)_2$-tn, where (IAA)$_2$-en, $(IAA)_2$-tn, and (IAA)-pn represent N,N'-enthylenbis(isonitrosoacetylacetone imine), N,N'-propylenebis(isonitrosoacetylacetone imine), N,N'-trimethylenebis(isonitrosoacetylacetone imine) and N-(2-aminopropyl)isonitrosoacetylacetone imine, respectively, have been prepared. The nickel(Ⅱ) and palladium(Ⅱ) complexes were characterized on the bases of the elemental analysis, IR, NMR, and electronic spectra. It is suggested that a isonitroso group of (IAA)$_2$-en or (IAA)$_2$-tn coordinates to the metal ion through the nitrogen atom to form five-membered ring, while the other isonitroso group of (IAA)$_2$-en or (IAA)$_2$-tn coordinates to the metal ion through the oxygen atom to form six membered ring in square-planar complexes of Ni(IAA)$_2$-tn and Pd(IAA)$_2$-en. And two isonitroso groups of (IAA)$_2$-en, (IAA)$_2$-pn, or (IAA)$_2$-tn coordinate to the metal ion through the nitrogen atom to form five-membered rings in square-planar complexes of Ni(IAA)$_2$-en, Ni(IAA)$_2$-pn, and Pd(IAA)$_2$-tn. On the other hand, square-planar PdCl(IAA)-pn is formed by the reaction of propylenediamine with a isonitrosoacetylacetone in the presence of palladium(Ⅱ)ion.

  • PDF

Fabrication of Highly Conductive Yarn using Electroless Nickel Plating (무전해 니켈 도금법을 이용한 고성능 도전사의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.

Separation of Goid, Palladium and Platinum in Chromite by Anion Exchange Chromatography for Inductively Coupled Plasma Atomic Emission Spectrometric Analysis

  • Choe, Gwang Sun;Lee, Chang Hyeon;Park, Yeong Jae;Jo, Gi Su;Kim, Won Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.801-806
    • /
    • 2001
  • A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behaviour of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(Ⅵ) to Cr(III) by H2O2. AuCl4- retained on the resin column was selectively eluted with acetone- HNO3-H2O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO3. The recovery yield of gold with acetone-HNO3-H2O was 100.7 ${\pm}2.0%$, and the yields of palladium and platinum with concentrated HCl and HNO3 were 96.1 ${\pm}1.8%$ and 96.6 ${\pm}1.3%$, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ${\pm}$ 2.2 ${\mu}g$/g and 1.6 $\pm$ 0.14 ${\mu}g$/g, respectively. Palladium was not detected.

Metal Complexes of Ambidentate Ligand (Ⅶ). Palladium (Ⅱ) Complexes of Isonitrosobenzoylacetone Diimine Derivatives (Ambidentate 리간드의 금속착물 (제 7 보). Isonitrosobenzoylacetone 디이민유도체를 리간드로 하는 팔라듐 (Ⅱ) 착물)

  • Choi, Gang-Yeol;Jun, Young-Sook;Baek, Jae-Bum;Lee, Man-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.667-672
    • /
    • 1991
  • Two palladium(Ⅱ) complexes, N-(2-aminoethylisonitrosobenzoylacetone imino) chloropalladium(Ⅱ), PdCl(IBA)-en, and N-(3-aminopropylisonitrosobenzoylacetone imino) chloropalladium(Ⅱ), PdCl (IBA)-tn, have been prepared from the condensation of isonitrosobenzoylacetone (IBA) and diamine (ethylenediamine(en) or trimethylenediamine(tn)) in the presence of palladium(Ⅱ) ion. It is suggested that the Schiff base formed by condensation of an isonitrosobenzoylacetone and a diamine coordinates to the metal through three nitrogens of isonitroso (=N-O), C=N, and $NH_2$groups as a tridentate ligand. And also a chloride ion coordinates to the metal in addition to the Schiff base ligand to form a square-planar geometry.

  • PDF

A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid (Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구)

  • Jeong, Sangjo;Choi, Hyungjin;Park, Sangjin;Lee, Juneil
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

Influence of shape and finishing on the corrosion of palladium-based dental alloys

  • Milheiro, Ana;Muris, Joris;Kleverlaan, Cornelis J.;Feilzer, Albert J.
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS. Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were used to cast two crowns and two disks. One of each was polished while the other was not. Two as-received alloys were also studied making a total of 5 specimens per alloy type. The specimens were submersed for 7 days in a lactic acid/sodium chloride solution (ISO standard 10271) and evaluated for surface structure characterization using SEM/EDAX. The solutions were quantitatively analysed for the presence of metal ions using ICP-MS and the results were statistically analysed with one-way ANOVA and a Tukey post-hoc test. RESULTS. Palladium is released from all specimens studied (range $0.06-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$), with the Pd-Cu alloy releasing the highest amounts. For both types of alloys, ion release of both disk and crown pairs were statistically different from the as-received alloy except for the Pd-Ag polished crown (P>.05). For both alloy type, disk-shaped pairs and unpolished specimens released the highest amounts of Pd ions (range $0.34-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). Interestingly, in solutions submerged with cast alloys trace amounts of unexpected elements were measured. CONCLUSION. Shape and surface treatment influence ion release from dental alloys; polishing is a determinant factor. The release rate of cast and polished Pd alloys is between $0.06-0.69{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$, which is close to or exceeding the EU Nickel Directive 94/27/EC compensated for the molecular mass of Pd ($0.4{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). The composition of the alloy does not represent the element release, therefore we recommend manufacturers to report element release after ISO standard corrosion tests beside the original composition.

A Study on the Electrochemical Behavior of Au and Pd in Hydrochloric Acidic Solution (염산 수용액 중에서 Au와 Pd의 전기화학적 거동에 관한 연구)

  • Yu, Yeon-Tae;Kim, Chi-Kwon
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.76-81
    • /
    • 2001
  • In order to recover Au and Pd from the leaching solution of various electronic wastes by electrowinning, the electrochemical behavior of Au and Pd in hydorchloric acidic solution was investigated by means of voltammetry. The reduction potential of Au ion was 800mV and the limiting current appeared at 470mV in electrolytic solution of gold. The reduction potential of Pd ion was 500mv and the limiting current appeared at 150mV in electrolytic solution of Palladium. However, in Au-Pd electrolytic solution, the Potentials for reduction and the limiting current of Au decreased as the content of Pd in electrolyte increased, and the potentials for the limiting current of Au and Pd closed nearest together when percentage of Pd electrolytic solution was 37v71% in Au-Pd electrolyte.

  • PDF

Hydrogen Transport through Palladium Foil Placed in Nafion Electrolyte of H2/O2 Fuel Cellsorption

  • Song, Seong-Min;Koo, Il-Gyo;Lee, Woong-Moo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.257-265
    • /
    • 2001
  • Placing a hydrogen conducting, methanol impermeable metallic barrier like palladium (Pd) is a well-known method for preventing methanol crossover through solid polymer electrolyte for direct methanol fuel cells (DMFC). Applying a bias potential between the anode and the barrier can further develop this concept so that the hydrogen transfer rate is enhanced. Since hydrogen diffuses in Pd as atomic form while it moves through nafion electrolyte as ion, it has to be reduced or oxidized whenever it passes the interface formed by Pd and the electrolyte. We performed experiments to measure the hydrogen transport through the Pd membrane placed in Nafion electrolyte of hydrogen/oxygen fuel cell (PEMFC). Applying a bias potential between the hydrogen electrode of the cell and the Pd membrane facilitated the hydrogen passage through the Pd membrane. The results show that the cell current measured with the Pd membrane placed reached almost 40 % the value measured with the cell without Pd membrane. It was found that the current flown through the bias path is only a few percent of the cell current.

  • PDF

EPR Study of the High $T_c$ Superconductor $YBa_2$$Cu_3$$O_{7-y}$ Doped with Palladium or Zinc

  • Hag Chun Kim;Hyunsoo So;Ho Keun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.499-504
    • /
    • 1991
  • EPR spectra of the high $T_c$ superconductor $YBa_2Cu_3O_{7-y}$ (YBCO) doped with $Pd^{2+} or Zn^{2+}$ have been measured at several temperatures and dopant concentrations. The spectral intensity of $YBa_2({Cu_{1-x}}{Pd_x})_3O_{7-y}$ is proportional to the dopant concentration. The behavior of $YBa_2(Cu_{1-x}Zn_x)_3O_{7-y}$ is quite different: the spectral intensity remains almost constant up to x=0.10 and then increases rapidly above x=0.10. The results are interpreted in terms of localized and antiferromagnetically spin-paired d holes in both CuO chain and planes. The $Pd_{2+}$ ion substitutes on the CuO chain consisting of "CuOCu dimers", and a $Cu_{2+}$ ion with an unpaired spin is gene rated for each $Pd_{2+}$ ion substituted. On the other hand, $Zn_{2+}$ substitutes on the CuO planes, and all or most of the spins in the two-dimensional plane manage to pair up in the region of low dopant concentration. When the dopant concentration exceeds a certain limit, it becomes more difficult for the spins to find partners, and the number of unpaired spins increases rapidly with increasing dopant concentration. The $Zn_{2+}$ ion is more effective than the $Pd_{2+}$ ion in suppressing the superconductivity of YBCO. This is attributed to the fact that $Zn_{2+}$ substitutes on the CuO planes which are mainly responsible for the superconductivity, while $Pd_{2+}$ substitutes on the CuO chain which is of secondary importance in the superconductivity.