• Title/Summary/Keyword: Palladium chloride

Search Result 41, Processing Time 0.026 seconds

Development of the Efficient Synthetic Route for Itraconazole Antifungal Agent (이트라코나졸 항진균제의 효과적인 합성법 개발)

  • Baek, Du-Jong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.633-637
    • /
    • 2006
  • In this study, the efficient large-scale synthetic route for itraconazole, triazole antifungal agent, was developed. The original synthetic route for medicinal chemistry reported by Janssen Pharmaceutica was linear (14 linear steps) starting from 2,4-dichloroacetophenone with the total yield of 1.4%, and potential hazardous materials such as methanesulfonyl chloride ($CH_{3}SO_{2}Cl$), hydrogen gas, and sodium hydride (NaH) were used. Furthermore, the expensive 1-acetyl-4-(4-hydroxyphenyl)piperazine and palladium were used in this medicinal chemistry route, thus the manufacturing cost would be practically high. In order to improve the commercial route, we developed the process of 12 step convergent synthesis combining two intermediates which are roughly halves of itraconazole with the total yield of 12.0%, and hazardous materials and expensive reagents were excluded in this process, thus the manufacturing cost could be cut down to a great extent.

Dental materials in patients with oral mucosal disease based on the results of patch test study (구강점막질환환자에서 치과재료를 이용한 첩포시험 결과에 대한 고찰)

  • Jeong, Sung-Hee;Kim, Ji-Su;Kim, Kyung-Hee;Ok, Soo-Min;Heo, Jun-Young;Ahn, Yong-Woo
    • The Journal of the Korean dental association
    • /
    • v.52 no.2
    • /
    • pp.96-104
    • /
    • 2014
  • The aim of this study was to investigate the frequency of positive patch test reaction to dental materials in patients with oral mucosal diseases. Epicutaneous patch test was performed in 110 patients with oral mucosal diseases; 41 patients with oral lichen planus(OLP), 44 patients with burning mouth syndrome(BMS), 25 patients with other oral mucosal diseases including recurrent aphthous ulcer and mucous membrane pemphigoid. The obtained results were as follows: Oral gold restorations were most common in patents with oral mucosal diseases and porcelain fused metal crown, implant appeared in the order. 33 of 110 patients did not appear skin reactions (negative, 30%) and 77 patients (positive, 70%) had skin reactions including redness, rash, blisters. Dental materials causing positive reaction to patch test were mainly as gold-sodium-thiosulfate (26.7%), nickel sulfate(Ni) (22.7%), cobalt chloride(Co) (14.7%), palladium chloride(Pd) (11.9%), potassium dichromate (10.7%) in order, respectively. In conclusion, old metal restorations could be the cause of oral mucosal diseases and epicutaneous patch test could be used as a tool to improve the oral conditions.

Hydrothermal Reduction of $\Co(OH)_2$ to Cobalt Powder Preparation ($Co(OH)_2$로부터 수열법에 의한 코발트 분말제조)

  • Kim, Dong-Jin;Chung, Hun-Saeng;Yu Kening
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.675-679
    • /
    • 1999
  • An investigation was performed to prepare spherical cobalt powder with about particle size of 400nm from aqueous cobalt hydroxide slurry under hydrothermal reduction conditions using palladium chloride as a catalyst. The reduction kinetics was in good agreement with a surface reaction core model equation. and the activation energy obtained from Arrhenius plots was 55.6 KJ/mol at the temperature range of $145~195^{\circ}C$. Additionally, the study showed that the cobalt reduction rate is proportional to the initial hydrogen pressure with a reaction order of n=0.63. which corresponds to the gas chemisorption reaction type.

  • PDF

Synthesis and Characterization of Poly(arylene-ethynylene)s with Ferrocene Unit by Reaction of 1,1'-Bis(ethynyldimethylsilyl)ferrocene and Aromatic Dihalides

  • Lee, In-Sook;Lee, Chong-Gu;Kwak, Young-Woo;Gal, Yeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • New poly(arylene-ethynylene)s with silicon-containing ferrocene moiety in the polymer main chain were synthesized via the C-C bond forming reactions of 1,1´-bis(ethynyldimethylsilyl)ferrocene and various aromatic dihalides in high yields. The aromatic dihalides include 1,4-dibromobenzene, 4,4´-dibromobiphenyl, 9,10-dibromoanthracene, 2,5-dibromopyridine, 2,5-dibromothiophene, and 2,6-diiodo-4-nitroaniline. The polymer structures and properties were characterized by such instrumental methods as NMR $(^1H-,\;^{13}C-,\;and\;^{29}Si-)$, IR, UV-visible spectroscopies and TGA/DSC. The spectral data indicated that the present polymers have the regular alternating structure of 1,1´-bis(ethynyldimethylsilyl)ferrocenylene and arylene units. The resulting polymers were completely soluble in such organic solvents as methylene chloride, chloroform, benzene, chlorobenzene, and THF. The thermal behaviors of the resulting polymers were examined.

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan;Lee, So-Hyun;Kim, Jung-Hwan;Kim, Jin-Eun;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2303-2308
    • /
    • 2009
  • A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.

Electroless Nickel Plating on Porous Carbon Substrate (다공성 탄소전극기지상의 무전해 니켈도금에 관한 연구)

  • Chun, So-Young;Rhyim, Young-Mok;Kim, Doo-Hyun;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.75-80
    • /
    • 2010
  • Electroless nickel plating on porous carbon substrate was investigated. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}$ to less than $20^{\circ}$ after ammonia pretreatment. The content of phosphorous in nickel deposit was decreased with increasing pH and then deposits became crystallized. The thickness of nickel deposit was increased with increasing pH. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 5 ppm and the thickness of nickel was not significantly affected by the concentration of $PdCl_2$.

Comparison of Acidic and Alkaline Bath in Electroless Nickel Plating on Porous Carbon Substrate (다공성 탄소전극상 무전해 니켈도금의 산성과 알칼리용액 비교 연구)

  • Chun, So-Young;Kang, In-Seok;Rhym, Young-Mok;Kim, Doo-Hyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • Electroless nickel plating on porous carbon substrate for the application of MCFC electrodes was investigated. Acidic and alkaline bath were used for the electroless nickel plating. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}C$ to less than $20^{\circ}$ after ammonia pretreatment. The deposition rate in the alkaline bath was higher than that in the acidic bath. The deposition rate was increased with increasing pH in both acidic and alkaline bath. The content of phosphorous in nickel deposit was decreased with increasing pH in both acidic and alkaline bath. The contents of phosphorous is low in alkaline bath. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 10 ppm in alkaline bath and 5 ppm in acidic bath. The thickness of nickel was not affected by the concentration of $PdCl_2$.

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Jung, Hyun-Sang;Park, Yun-Sik;Seul, Jung-Min;Kim, Jong-Sook;Lee, Ho-Jin;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2711-2716
    • /
    • 2011
  • para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.