• 제목/요약/키워드: Paley-Wiener-Schwartz theorem

검색결과 3건 처리시간 0.018초

REAL VERSION OF PALEY-WIENER-SCHWARTZ THEOREM FOR ULTRADISTRIBUTIONS WITH ULTRADIFFERENTIABLE SINGULAR SUPPORT

  • Cho, Jong-Gyu;Kim, Kwang-Whoi
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.483-493
    • /
    • 1999
  • We extend the Paley-Wiener-Schwartz theorem to the space of ultradistributions with respect to ultradifferentiable singular support and obtain its real version. That is, we obtain the growth condition in some tubular neighborhood of n of the Fourier transform of ultradistributions of Roumieu (or Beurling) type with ultradifferentiable singular support contained in a ball centered at the origin, and its real version.

  • PDF

WHITE NOISE HYPERFUNCTIONS

  • Chung, Soon-Yeong;Lee, Eun-Gu
    • 대한수학회논문집
    • /
    • 제14권2호
    • /
    • pp.329-336
    • /
    • 1999
  • We construct the Gelfand triple based on the space \ulcorner, introduced by Sato and di Silva, of analytic and exponentially decreasing function. This space denoted by(\ulcorner) of white noise test functionals are defined by the operator cosh \ulcorner, A=-(\ulcorner)\ulcorner+x\ulcorner+1. We also note that many properties like generalizations of the Paley-Wiener theorem and the Bochner-Schwartz theorem hold in this space as in the space of Hida distributions.

  • PDF

THE PRODUCT OF ANALYTIC FUNCTIONALS IN Z'

  • Li, Chenkuan;Zhang, Yang;Aguirre, Manuel;Tang, Ricky
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.455-466
    • /
    • 2008
  • Current studies on products of analytic functionals have been based on applying convolution products in D' and the Fourier exchange formula. There are very few results directly computed from the ultradistribution space Z'. The goal of this paper is to introduce a definition for the product of analytic functionals and construct a new multiplier space $F(N_m)$ for $\delta^{(m)}(s)$ in a one or multiple dimension space, where Nm may contain functions without compact support. Several examples of the products are presented using the Cauchy integral formula and the multiplier space, including the fractional derivative of the delta function $\delta^{(\alpha)}(s)$ for $\alpha>0$.