• Title/Summary/Keyword: Paired two sample t-test

Search Result 102, Processing Time 0.016 seconds

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

CComparative evaluation of the methods of producing planar image results by using Q-Metrix method of SPECT/CT in Lung Perfusion Scan (Lung Perfusion scan에서 SPECT-CT의 Q-Metrix방법과 평면영상 결과 산출방법에 대한 비교평가)

  • Ha, Tae Hwan;Lim, Jung Jin;Do, Yong Ho;Cho, Sung Wook;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.90-97
    • /
    • 2018
  • Purpose The lung segment ratio which is obtained through quantitative analyses of lung perfusion scan images is calculated to evaluate the lung function pre and post surgery. In this Study, the planar image production methods by using Q-Metrix (GE Healthcare, USA) program capable of not only quantitative analysis but also computation of the segment ratio after having performed SPECT/CT are comparatively evaluated. Materials and Methods Lung perfusion scan and SPECT/CT were performed on 50 lung cancer patients prior to surgery who visited our hospital from May 1, 2015 to September 13, 2016 by using Discovery 670(GE Healthcare, USA) equipment. AP(Anterior Posterior)method that uses planar image divided the frontal and rear images into three rectangular portions by means of ROI tool while PO(Posterior Oblique)method computed the segment ratio by dividing the right lobe into three parts and the left lobe into two parts on the oblique image. Segment ratio was computed by setting the ROI and VOI in the CT image by using Q-Metrix program and statistically analysis was performed with SPSS Ver. 23. Results Regarding the correlation concordance rate of Q-Metrix and AP methods, RUL(Right upper lobe), RML(Right middle lobe) and RLL(Right lower lobe) were 0.224, 0.035 and 0.447. LUL(Left upper lobe) and LLL(Left lower lobe) were found to be 0.643 and 0.456, respectively. In the PO method, the right lobe were 0.663, 0.623 and 0.702, respectively, while the left lobe were 0.754 and 0.823. When comparison was made by using the Paired sample T-test, Right lobe were $11.6{\pm}4.5$, $26.9{\pm}6.2$ and $17.8{\pm}4.2$, respectively in the AP method. Left lobe were $28.4{\pm}4.8$ and $15.4{\pm}5.6$. The right lobe of PO had values of $17.4{\pm}5.0$, $10.5{\pm}3.6$ and $27.3{\pm}6.0$, while the left lobe had values of $21.6{\pm}4.8$ and $23.1{\pm}6.6$, thereby having statistically significant difference in comparison to the Q-Metrix method for each of the lobes (P<0.05). However, there was no statistically significant difference in Right middle lobe (P>0.05). Conclusion The AP method showed low concordance rate in correlation with the Q-Metrix method. However, PO method displayed high concordance rate overall. although AP method had significant differences in all lobes, there was no significant difference in Right middle lobe of PO method. Therefore, at the time of production of lung perfusion scan results, utilization of Q-Metrix method of SPECT/CT would be useful in computation of accurate resultant values. Moreover, it is deemed possible to expect obtain more practical sectional computation result values by using PO method at the time of planar image acquisition.