• Title/Summary/Keyword: Pair-wise Variability

Search Result 6, Processing Time 0.018 seconds

Syllable-timing Interferes with Korean Learners' Speech of Stress-timed English

  • Lee, Ok-Hwa;Kim, Jong-Mi
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.95-112
    • /
    • 2005
  • We investigate Korean learners' speech-timing of English before and after instruction in comparison with native speech, in an attempt to resolve disagreements in the literature as to whether speech-timing is measurable (Lehiste, 1977; Roach, 1982; Dauer, 1983 vs. Low et al., 2000; Yun 2002; Jian, 2004). We measured the pair-wise variability between the adjacent stressed and unstressed syllables within a foot as well as that among adjacent feet in approximately 555 English sentences, which were read by 29 native speakers and 41 Korean learners in the intermediate proficiency level. The results show that in comparison with native American English, Korean learner speech is before instruction significantly (p<.001) smaller for the pair-wise variability between the adjacent stressed and unstressed syllables within a foot; and significantly (p=.01) bigger for the variability among adjacent feet within the utterance. The learner speech after instruction showed significant (p=.01) improvement in the pair-wise variability of syllable sequence toward native speech values. The variability among adjacent feet was progressively smaller for learner speech before and after instruction and for native speech (p=.03). We thus conclude that the speech timing difference between Korean English and American English is measurable in terms of the duration. of stressed and unstressed syllables and that the latter is stress-timed and the former is syllable-timing interfered.

  • PDF

Genetic Variability in the Natural Populations of Daba Ecorace of Tasar Silkworm (Antheraea mylitta Drury), as Revealed by ISSR Markers

  • Mohandas, T.P.;Vijayan, K.;Kar, P.K.;Awasthi, A.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.211-215
    • /
    • 2004
  • Genetic diversity within the natural populations of Daba ecorace of Antheraea mylitta Drury was studied using individual silkworms collected from the South Singhbhum district of Jharkhand state of India with 21 inter simple sequence repeat (ISSR) primers. A total of 148 bands were produced, of which 79% was polymorphic. The pair wise genetic distance among the individuals varied from 0.186 to 0.329. The dendrogram grouped the individuals into 3 major clusters. Nei's heterozygosity analysis revealed 0.265 ${\times}$ 0.18 variability within the population. The high genetic variability present within the natural population of Daba ecorace of A. mylitta is indicative of their adaptational strategy in nature and have much importance for in situ conservation as well as utilization in breeding programs.

Estimation of Effective Population Size in the Sapsaree: A Korean Native Dog (Canis familiaris)

  • Alam, M.;Han, K.I.;Lee, D.H.;Ha, J.H.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1063-1072
    • /
    • 2012
  • Effective population size ($N_e$) is an important measure to understand population structure and genetic variability in animal species. The objective of this study was to estimate $N_e$ in Sapsaree dogs using the information of rate of inbreeding and genomic data that were obtained from pedigree and the Illumina CanineSNP20 (20K) and CanineHD (170K) beadchips, respectively. Three SNP panels, i.e. Sap134 (20K), Sap60 (170K), and Sap183 (the combined panel from the 20K and 170K), were used to genotype 134, 60, and 183 animal samples, respectively. The $N_e$ estimates based on inbreeding rate ranged from 16 to 51 about five to 13 generations ago. With the use of SNP genotypes, two methods were applied for $N_e$ estimation, i.e. pair-wise $r^2$ values using a simple expectation of distance and $r^2$ values under a non-linear regression with respective distances assuming a finite population size. The average pair-wise $N_e$ estimates across generations using the pairs of SNPs that were located within 5 Mb in the Sap134, Sap60, and Sap183 panels, were 1,486, 1,025 and 1,293, respectively. Under the non-linear regression method, the average $N_e$ estimates were 1,601, 528, and 1,129 for the respective panels. Also, the point estimates of past $N_e$ at 5, 20, and 50 generations ago ranged between 64 to 75, 245 to 286, and 573 to 646, respectively, indicating a significant $N_e$ reduction in the last several generations. These results suggest a strong necessity for minimizing inbreeding through the application of genomic selection or other breeding strategies to increase $N_e$, so as to maintain genetic variation and to avoid future bottlenecks in the Sapsaree population.

Assessment of Genetic Variability in Two North Indian Buffalo Breeds Using Random Amplified Polymorphic DNA (RAPD) Markers

  • Sodhi, M.;Mukesh, M.;Anand, A.;Bhatia, S.;Mishra, B.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1234-1239
    • /
    • 2006
  • Murrah and NiliRavi are the important North Indian buffalo breeds occupying the prominent position of being the highest milk producers. These breeds are more or less similar at morphological as well as physiological levels. The technique of RAPD-PCR was applied in the present study to identify a battery of suitable random primers to detect genetic polymorphism, elucidation of the genetic structure and rapid assessment of the differences in the genetic composition of these two breeds. A total of 50 random primers were screened in 24 animals each of Murrah and NiliRavi buffaloes to generate RAPD patterns. Of these, 26 (52%) primers amplified the buffalo genome generating 263 reproducible bands. The number of polymorphic bands for the 26 chosen RAPD primers varied from 3 (OPG 06 and B4) to 26 (OPJ 04) with an average of 10.1 bands per primer and size range of 0.2 to 3.2 kb. DNA was also pooled and analyzed to search for population specific markers. Two breed specific RAPD alleles were observed in each of Murrah (OPA02 and OPG16) and NiliRavi (OPG09) DNA pools. RAPD profiles revealed that 11 (4.2%) bands were common to all the 48 individuals of Murrah and NiliRavi buffaloes. Pair-wise band sharing calculated among the individual animals indicated considerable homogeneity of individuals within the breeds. Within breed, band sharing values were relatively greater than those of interbreed values. The low genetic distance (Nei's) value (0.109) estimated in this study is in accordance with the origin and geographical distribution of these breeds. The RAPD analysis indicated high level of genetic similarity between these two important North Indian buffalo breeds.

Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers

  • Chen, Guohong;Bao, Wenbin;Shu, Jingting;Ji, Congliang;Wang, Minqiang;Eding, Herwin;Muchadeyi, Farai;Weigend, Steffen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.331-339
    • /
    • 2008
  • The genetic structure and diversity of 15 Chinese indigenous chicken breeds was investigated using 29 microsatellite markers. The total number of birds examined was 542, on average 36 birds per breed. A total of 277 alleles (mean number 9.55 alleles per locus, ranging from 2 to 25) was observed. All populations showed high levels of heterozygosity with the lowest estimate of 0.440 for the Gushi chickens, and the highest one of 0.644 observed for Wannan Three-yellow chickens. The global heterozygote deficit across all populations (FIT) amounted to 0.180 (p<0.001). About 16% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to this differentiation. An unrooted consensus tree was constructed using the Neighbour-Joining method and pair-wise distances based on marker estimated kinships. Two main groups were found. The heavy-body type populations grouped together in one cluster while the light-body type populations formed the second cluster. The STRUCTURE software was used to assess genetic clustering of these chicken breeds. Similar to the phylogenetic analysis, the heavy-body type and light-body type populations separated first. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. Remarkably similar breed rankings were obtained with all methods.

Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics

  • Tarekegn, Getinet Mekuriaw;Ji, Xiao-yang;Bai, Xue;Liu, Bin;Zhang, Wenguang;Birungi, Josephine;Djikeng, Appolinaire;Tesfaye, Kassahun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1393-1400
    • /
    • 2018
  • Objective: This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. Methods: We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian${\times}$Barka cross bred cattle populations. Results: In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were $0.7540{\pm}0.043$ and $0.0010{\pm}0.000$, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance ($F_{ST}$) was 0.049539 with the highest ($F_{ST}=0.1245$) and the lowest ($F_{ST}=0.011$) $F_{ST}$ distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. Conclusion: Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus.